The reaction $\gamma p \rightarrow f_2(1270) p$ from double- π^0 data at CLAS

Ken Hicks, Ohio Univ. (for M. Carver and A. Celentano)

Workshop on Two-Meson Photoproduction

Jefferson Lab, Sept. 18, 2019

Background

- The $f_2(1270)$ meson is the lowest-mass tensor meson, in the nonet that contains the $a_2(1320)$ and the $K^*_2(1430)$.
 - It is easily excited in photoproduction reactions.
 - The decay $f_2(1270) \rightarrow \pi\pi$ with B.R. = 84.2%.
 - Threshold for $\gamma p \rightarrow f_2 p$ at W = 2.21 GeV, corresponding to $E_{\gamma} = 2.13$ GeV.
- The g12 data from CLAS contains a large number of $\pi^0\pi^0$ events.
 - These events are from 4γ events, where all hit the EC (at forward angles).
 - The analysis was initiated from the pre-sifted data files of A. Celentano, which were originally made for a different purpose.
 - The $\pi^0\pi^0$ final state was analyzed by M. Carver as a summer research project

Interest in the $f_2(1270)$

- There is possible mixing of the $J^{PC} = 2^{++}$ mesons with the 2^{++} glueball.
 - If we want to understand the glueball spectrum, we need to first understand the conventional tensor mesons
 - J/ ψ decays to γ +f₂(1270) requires 2 D-wave components: due to 2⁺⁺ glueball?
 - Ref: Shen and Yu, PRD 40, 1517 (1989): "Glueball components of the meson f₂(1270)"
- Another proposal is that the $f_2(1270)$ is a $\rho-\rho$ molecule
 - Ref: Xie and Oset, Eur. Phys. J. A 51, 111 (2015)
 - Based on fits to older CLAS data: Battaglieri et al., PRD 80, 072005 (2009).
 - The CLAS data had large (>20%) error bars, based on $\pi^+\pi^-$ final state from g11.
 - Xie and Oset also predict an E_{γ} dependence to the total cross section.

CLAS g11 $\pi^+\pi^-$ analysis: Multipole Fits

For one bin: E_{γ} =3.2-3.4 GeV, |t|=0.5-0.6.

 $M_{\pi\pi}$ = 1.19-1.46 GeV, for E_{γ} = 3.0-3.8 GeV

New g12 data using $\pi^0\pi^0$: no p background

Preliminary fits to the g12 data

Red: sum of all parts Blue: $f_2(1270)$ peak Green: phase space

VERY preliminary cross sections: DO NOT USE!

Overlaying Cross Sections 3.6 - 5.4 GeV

Theory predictions

Xie and Oset: EPJ A 51, 111 (2015)

Data from Battaglieri, PRD 80 (2009)

Question: can we use circ.-pol. γ 's of g12?

parity transformation. So we choose the photon helicity $\lambda_{\gamma} = +1$ as a reference helicity and refer to amplitudes corresponding to various *M* as no flip, single flip (either up or down), double flip amplitudes, and so forth. From

The point here is that the t-dependence is very different for each M-substate. Can we use the polarization from g12 to see this?

Bibrzycki and Kaminski, PRD 87, 114010 (2013).

Summary

- There are good physics reasons for studying the $f_2(1270)$
 - Likely mixing with the tensor glueball
 - Possible $\rho \rho$ molecular coupling, which could be studied on the lattice.
- The previous photoproduction data from $\pi^+\pi^-$ is limited
 - Statistical errors are limited by huge $\rho\text{-meson}$ background
 - Large E_{γ} range needed to average over is not good for comparison to theory
- New g12 data for $\pi^0\pi^0$ final state has good statistics
 - Smaller error bars, smaller bins in E_{γ} and |t|.
 - Also, the possibility of circular polarization. Is it useful here?