Hall D Online Meeting

31 January 2008

Fast Electronics

R. Chris Cuevas
Group Leader
Jefferson Lab
Experimental Nuclear Physics Division

Electronics Plan - Update FADC250 Update & Test Plans System Engineering

- -- Drawings/Documentation
- -- Preparation for Trigger/DAQ sub-system review

"The Electronics Plan"

• GlueX- Doc - 614

Figure 1: Schematic of the electronic boards that are required to support the plans for GlueX pipeline electronics and data acquisition. Indicated are the module classifications, responsible groups, expected use in the 6 or 12GeV program, and estimate of time frame for design and prototyping.

Details about the updated plan,,

- 34 weeks until the end of FY08
- We have identified FY09 PED activities that will start now
- 1. FADC250 work will continue Need to fabricate four more prototypes
- 2. 20 Slot VXS crate testing Qualify new backplane; Tests with multiple FADC250 & TI
- **3. Trigger Interface** Design and fabrication of prototype unit in progress (Ed, Ben)
- 4. Clock/Trigger Distribution module Welcome Abishek Gupta to Fast Electronics Group
- **5. F1TDC Version 2** Create new specifications and functional requirement document (Fernando, Ed)
- **6. Crate Energy Sum module** Design and prototype circuit board for full crate (Hai, Jeff, Ben, Chris)
 - Detailed System Drawings will be completed in February for Trigger/DAQ sub-system review (Chris, Mark)
 - Global Trigger Processor crate and conceptual design have progressed significantly
 - Draft Specification for Subsystem Processor (SSP) completed (Ben)
 - Global Trigger Processor Need Draft Specification (Dave Doughty?,,,)
 - Trigger Supervisor Need Draft Specification (Ed)
 - Clock/Trigger Distribution Need Draft Specification (Ben, Ed, Chris,,,)

FADC250 Update and Test Plan

- FADC250 Meeting every Friday
 - 5 prototypes built and functional (See Table)
 - Raw data readout mode successfully tested at 250Msps
 - New commercial parts with Gigabit Transceivers working in loop back mode for two week continuously!! Two modules with 3.125Gbps transmission speed, and BitErrorRateTest produces no failures. (Hundreds of Terabits,,)
 - Planning to produce 4 more prototype modules to support test stand development and other essential system tests.
 - Peripheral clock & trigger modules have been designed to support single module testing
 - 12 bit design is on the horizon,,,,

Prototype status: Updated 25Jan08

Board #	ADC Type	VXS	Status Notes	
11089-1-001	10 bit	P0 installed	"Hai's board"	Testing continues
11089-1-002	10 bit	P0 NOT installed	Ed's board	Testing continues
11351-1-001	12 bit	P0 installed	8 channels only	
11351-1-002	10 bit	P0 installed	Received 7Jan08	IBERT SerDes Testing for 2 weeks straight!!!
11351-1-002	10 bit	P0 installed	Received 7Jan08	IBERT SerDes Testing for 2 weeks straight!!!

System Engineering

Hall D Drawing and Document Numbers

Description	Drawing Number
Trigger System – Top Level	D00000-16-08-0000
Level 1 Energy Sum – Fiber Distribution	-16-08-0001
Trigger_Link and Clock Distribution – Fiber Optic	-16-08-0002
Specifications & Functional Description	
FADC-250 Module	-16-08-S000
Crate Energy Sum Module	-16-08-S001
Trigger Interface Module	-16-08-S002
Front-End Crate Clock/Trigger Distribution Module	-16-08-S003
Sub_System Processor Module	-16-08-S004
Global Trigger Processor Module	-16-08-S005
Trigger Supervisor Module	-16-08-S006
Trigger & Clock Distribution Module	-16-08-S007
TS Crate Trigger_Link Hub Module	-16-08-S008
TS Crate Clock Hub Module	-16-08-S009
VXS Crate Specification (JLAB Requirements)	-16-08-S010

System Engineering

Hall D Drawing and Document Numbers continued,,

Description	Drawing Number
Readout Controller Network – Top Level	D00000-16-09-0000
High Speed DAQ Subnet- Fiber Distribution	-16-09-0001
Slow Controls Subnet Ethernet	-16-09-0002
Terminal Server Connections	-16-09-0003
Specifications & Functional Description	
Perfect place to store vendor specifications and manuals for network gear and other commercial equipment	-16-09-SNNN

System Engineering

- Detailed system drawings are progressing nicely
 - These drawings are more than block diagrams
 - Details of every connection needed for a full functioning system
 - Specifications and model numbers for commercial equipment will be noted. (i.e. Fiber patch panels, cable types, connectors,,)
- Will need first draft 'check' before end of February
- Several specifications and functional description documents need to be created
- After these system 'logical' drawings are complete we MUST begin the details of the 'physical' equipment rack layouts.
 (Analogous to schematic symbols (logical) to circuit board layout (physical)
- We will work closely with the Mechanical Engineers to capture crucial physical layout issues for each sub-system.

- Examples of physical rack layout drawings
- ALL equipment must be shown to identify rack space issues (i.e. Network gear, patch panels, splitter panels, etc.)
- Airflow/Cooling issues will need to be identified and resolved

Questions? Discussion?

Jefferson Lab
Thomas Jefferson National Accelerator Facility

Latest Designs

16 channel 250 Msps Flash ADC

VXS High Speed Serial Backplane

