Understanding the BCAL Energy Resolution and Calibration
 A Progress Report - Installment II
 Alex R. Dzierba

Re-visiting the Calibration: In the previous note I looked at energy deposition in layers and compared that to the epected mean longitudinal profile in an electromagnetic cascade ${ }^{1}$:

$$
\begin{equation*}
\frac{d E}{d t}=E_{0} b \frac{(b t)^{a-1} e^{-b t}}{\Gamma(a)} \tag{1}
\end{equation*}
$$

where t is thickness in radiation lengths, E_{0} is the energy of the particle initiating the shower, $b \approx 0.5$, and

$$
\begin{equation*}
\frac{a-1}{b}=t_{\max }=\ln \left(\frac{E_{0}}{E_{c}}\right)+0.5 \tag{2}
\end{equation*}
$$

with $E_{c} \approx 800 \mathrm{MeV} / Z_{\text {eff }}$. From the note by Zisis and others ${ }^{2}$ we have $Z_{\text {eff }} \approx 73$ for the $\mathrm{Pb} / \mathrm{SciFi}$ matrix and a radiation length of 1.3 cm . Equation 1 can then be used to compare the expected fractional energy deposition in each layer with data.

In the previous note I simply evaluated equation 1 at the center of each layer and multiplied by layer thickness to obtain the fractional energy deposition in the layer. I now integrate the function over the layer thickness. The total fractional energy integrated over six layers is 98% at the highest beam energy.

In calculating the energy deposition per layer for the normal incidence run (run 2334) I found the NorthSouth geometric mean per segment and summed over segments for each layer. I then then tuned ${ }^{3}$ the calibration constants for the first four layers to achieve reasonable agreement between data and the expected fractional energy deposition per layer - see the left panel of Figure 1. I then used these calibration constants in run 2363 (nominal beam incidence of 40°) and re-computed the expected deposition using equation 1. The results are shown in the right panel of Figure 1.

Note that the parameterization of equation 1 fails to describe the data below about 300 MeV . According to the reference cited in footnote 1 , the parameterization was originally obtained by fitting energy deposition profiles for carbon through uranium from 1 to 100 GeV . However, there also seems to be a discontinuity in the data at around 300 MeV for the first three layers.

I also noticed that the nominal 40° data were better described by assuming an angle of incidence of 45°. Is is possible that there was some ambiguity in determining the angle for run 2363 ? For completeness, I show the expected energy deposition for the first four layers at $40^{\circ}, 45^{\circ}$ and 50° in Figure 2. Again, however, I do not know how reliable equation 1 is for our application and our range of energies.

It would be good to compare data with more detailed GEANT-based simulations of the BCAL module.

[^0]Measuring Attenuation Length I used information from the North and South PMT's for segment 8 for runs 2334,2335 and 2336 where the beam was positioned at $0,-50$ and -100 cm with respect to module center. The result of a fit to an exponential is shown in Figure 3. The resulting attenuation length is $259 \pm 8 \mathrm{~cm}^{4}$.

Figure 1: Left panel: Comparison of energy deposition in the six BCAL layers for run 2334 (normal incidence at the module center) with the expected deposition according to equation 1 . The calibration constants for the layers were tuned to agree with expectations. Right panel: Comparison of data and expectations for run 2363 . For the curves, an angle of incidence of 45° was assumed - see the text for more details.

[^1]

Figure 2: Expected energy deposition for the first four layers at $40^{\circ}, 45^{\circ}$ and 50° using equation 1.

Figure 3: Attenuation length estimate using information from the North and South PMT's for segment 8 for runs 2334,2335 and 2336 where the beam was positioned at $0,-50$ and -100 cm with respect to module center. The result of a fit to an exponential is shown in Figure 3. The resulting attenuation length is $259 \pm 8 \mathrm{~cm}$.

[^0]: ${ }^{1}$ See the Passage of Charged Particles Through Matter section of the Particle Data Booklet.
 ${ }^{2} B C A L$ Radiation Length Calculations, GlueX-doc-439.
 ${ }^{3}$ I tuned by hand - it took 3 iterations. The calibration constants for layers $1,2,3$ and 4 are $0.83,0.88,1.22$ and 1.73 with an overall calibration from ADC to energy to yield a mean beam to calorimeter energy ratio of unity.

[^1]: ${ }^{4}$ Christina Kourkoumeli reported an attenuation length measurement of 257 cm at the May 14-15 2007 PID Workshop.

