
Plugins in JANA

July 13, 2010
David Lawrence JLab

…some stuff you probably already know…

•  Programs are collections of smaller, self-contained instruction sequences
–  Routines
–  Subroutines
–  Functions
–  Methods
–  …choose a name …

•  Linking these together can be done either a priori or dynamically at the time
the program is run

•  Routines that are dynamically linked are kept in separate files from the main
program

–  Shared libraries
–  Shared objects
–  Dynamically Linked Libraries (DLL)
–  …choose a name …

•  Shared libraries can be linked by the system at program startup or their
routines can be accessed programmatically via the dl (“D-L”) library.

Using libdl
•  Open a shared object

–  void *handle dlopen(“file.so”, RTLD_GLOBAL);!

•  Look for symbol (routine) by name
–  InitPlugin_t *plugin = (InitPlugin_t*)dlsym(handle, "InitPlugin”);

•  Call routine (if symbol is found)
–  (*plugin)(this);!

•  No way to check argument list. Have to assume it.
–  For JANA plugins, the routine name is “InitPlugin” and the argument

is a JApplication*.
•  With the JApplication pointer, the plugin can:

–  Register event processors (JEventProcessor)
–  Register factories (JFactoryGenerator)
–  Register event sources (JEventSource)
–  …etc, etc, ….

Uses for plugins
•  Make and fill histograms/trees
•  Add or replace factories

–  factories from plugins take precedence
–  hdparsim

•  Add capability to read in different file formats or events/objects
from different network protocols

•  Add capability to read in calibration constants from a different
source
–  jcalibws (web services interface)

•  Activate additional monitoring or controls
–  janadot
–  janarate
–  janactl
–  rootspy

Making a plugin

•  Use the mkplugin script in the Hall-D
scripts directory
–  https://halldsvn.jlab.org/repos/trunk/scripts/mkplugin
– mkplugin myPlugin

•  DEventProcessor_myPlugin.h!
•  DEventProcessor_myPlugin.cc!
•  Makefile!

DEventProcessor.cc

The DEventProcessor,cc
file contains skeletal code
for an event processor
that can be used to make
and fill histograms.

Also contains the “magic”
code that makes it a
plugin and adds one
instance of the event
processor.

Gotchas

•  Global variables with the same name
•  Libraries statically linked into both plugin

and executable
– Potential version mismatch

•  Library statically linked to executable but
not plugin and plugin needs something
from it that executable doesn’t
– Link failure at time dlopen is called

Existing GlueX plugins

•  hdparsim - semi-parametric simulation
•  mcthrown_hists - generated particle hists
•  radlen_hists - radiation lengths
•  phys_tree - tree with reconstructed part.
•  eta_ntuple - hbook Ntuple for PrimEx
•  …several more, but many out of date

Multiple plugins may be used by a single process. Because of this a
convention has been adopted to create a TDirectory and place
histograms/trees within to avoid naming conflicts with other plugins.

Specifying plugins to JANA
programs

•  Use “PLUGINS” configuration parameter
to specify plugins as a comma separated
list.
– Example:

 hd_root –PPLUGINS=phys_tree,janarate …

•  Specify with --plugin command line option
– Example:

 hd_root --plugin=phys_tree –plugin=janarate

Summary

•  Plugins are fully supported in JANA
•  Several plugins exist in repository

– src/programs/Analysis/plugins
– src/programs/Simulation/plugins

•  scripts/mkplugin script makes it easy to
get started

