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Motivation

• Understand the origin of χ2 of each track

• Need to know the inner workings of the Kalman filter

• essential to physics analyses

Goal

What is the Kalman filter, and how does it work?
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Overview I

• Kalman filtering is a powerful tool to estimate the best parameters for
a given system

• The system is assumed to evolve according to a known set of
equations, with some stochastic error

• The parameters to determine are x (n-dimensional vector)

• If the x are known at the k − 1th point, then the values at the kth
point are given as

xk = Axk−1 + wk−1,

where the matrix A represents the known dynamics, and the wk−1

represent the update error
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Overview II

• At the kth point, we also do a measurement of the system, so that we
have the prediction and the measurement

• In general, we cannot directly measure the observables of interest x
directly, but we measure z (m-dimensional vector), which have the
relation

zk = Hxk + vk,

where H is a m× n matrix

• The vk are the measurement errors associated with the measurement

The question is:

Given the prediction for xk and the measurement zk, what is the best
estimate for xk?
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Simple Example I

• Assume we want to estimate the position of a particle in 1D

• Assume no dynamics

• If the 1st measurement yields x1 ± σ1, our best estimate at a later
time will be the same

• Now, if a second measurement yields x2 ± σ2, what is the best
estimate for x?

⇓

Best estimate is weighted average

x =

∑
i=1,2 xi/σ2

i∑
i=1,2 1/σ2

i

σ2 = 1/

 ∑
i=1,2

1/σ2
i


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Simple Example I

• The answer is:

x =
σ2

2

σ2
1 + σ2
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• Let us rewrite this as
x = x1 + K(x2 − x1),
σ2 = (1−K)σ2

1,

K = σ2
1

σ2
1+σ2

2
= σ2

1

(
σ2

1 + σ2
2

)−1
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Simple Example I

• Notice:
I The equation

x = x1 + K(x2 − x1)

is of the form

best estimate = prediction + Kalman gain× (measurement− prediction)

I measurement− prediction ≡ residual
I σ2 < σ2

1 , σ2
2 (more measurements, less error)

I if σ1 → 0, x → x1 and vice versa
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Simple Example II

• The previous example had no dynamics, but for example, we could
have a system where the position of the particle is given as

dx

dt
= u + w,

where u is constant and w is a stochastic error (e.g. multiple
scattering)

• In this case, if the measurement at t1 gave x1 ± σ1, then our
prediction at t2 will be

x = x1 + u(t2 − t1)

σ2 = σ2
1 + σ2

w(t2 − t1)

• Now given a measurement at t2 that is x2 ± σ2, our best estimate is
given by the same kind of expression as before

• Notice that both the prediction error and the measurement error are
combined to give an error that is smaller than both
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General Form

• The evolution of the system is given as

xk = Axk−1 + wk−1 prediction

zk = Hxk + vk measurement with noise

• Assume the stochastic error in the prediction has covariance matrix
(n× n) Q

• Starting from the covariance matrix at k− 1, the predicted covariance
matrix is

C−k = ACk−1A
T + Q all n× n matrices

• Assume the measurement has a covariance matrix (m×m) R

• We would like to combine the a priori prediction x−k , the a posteriori
measurement zk, while taking into account the errors Q and R.
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General Form

• The best estimate for xk given the measurement zk should minimize
the a posteriori covariance matrix with respect to xk

• The solution is the same form as in the examples,

x = x−k + K(zk −Hx−k )

K = C−k HT (HC−k HT + R)−1

Ck = (1−KH)C−k

(compare to equations on p.6)

• Recall that H is the m× n matrix that converts the parameters x
into z, i.e.,

zk = Hxk + vk
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How This Applies to GlueX

• Kalman filter implemented in class DTrackFitterKalmanSIMD

• The parameters of interest are called S (what we called x above), and
is a 5D vector

• The dynamics of the system (A above) is the charged particles
bending in the magnetic field

• The stochastic errors (Q above) associated with the update equations
are multiple scattering

• We assume we know both A and Q

• The hits in the drift chambers constitute the measurements (z above)
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DTrackFitterKalmanSIMD::KalmanForwardCDC

• This function sets the χ2 and ndof for a given region of the detector

• We want the best estimate of ~S = {x, y, tx, ty, q/p}
• The update equation is given by the 5× 5 matrix J

• The multiple scattering covariance matrix is given by Q

• Each measurement is the CDC hits, which gives 1 measurement, so
that z is a 1-dimensional vector

• The measurement “covariance matrix” is given by V , where

V = σ2
CDC(dm) + v2

CDCσ2
t0 ,

dm = vCDC × (tdrift − thit − t0)
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DTrackFitterKalmanSIMD::KalmanForwardCDC

• Putting all this together:

expression code

C− = ACAT + Q C = JCJT + Q
x = x− + K(z − x−) S = S + K(dm− d)
C = (1−KH)C− C = (1−KH)C
K = C−H(HC−HT + R)−1 K = CH(HCHT + V )−1
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