The Kalman Filter

Kei Moriya

Indiana University

April 11, 2011

Motivation

- Understand the origin of χ^{2} of each track
- Need to know the inner workings of the Kalman filter
- essential to physics analyses

GOAL

What is the Kalman filter, and how does it work?

Overview I

- Kalman filtering is a powerful tool to estimate the best parameters for a given system
- The system is assumed to evolve according to a known set of equations, with some stochastic error
- The parameters to determine are x (n-dimensional vector)
- If the x are known at the $k-1$ th point, then the values at the k th point are given as

$$
x_{k}=A x_{k-1}+w_{k-1},
$$

where the matrix A represents the known dynamics, and the w_{k-1} represent the update error

Overview II

- At the k th point, we also do a measurement of the system, so that we have the prediction and the measurement
- In general, we cannot directly measure the observables of interest x directly, but we measure z (m-dimensional vector), which have the relation

$$
z_{k}=H x_{k}+v_{k},
$$

where H is a $m \times n$ matrix

- The v_{k} are the measurement errors associated with the measurement

The Question IS:

Given the prediction for x_{k} and the measurement z_{k}, what is the best estimate for x_{k} ?

Simple Example I

- Assume we want to estimate the position of a particle in 1D
- Assume no dynamics
- If the 1 st measurement yields $x_{1} \pm \sigma_{1}$, our best estimate at a later time will be the same
- Now, if a second measurement yields $x_{2} \pm \sigma_{2}$, what is the best estimate for x ?

$$
\Downarrow
$$

Best estimate is weighted average

$$
\begin{aligned}
x & =\frac{\sum_{i=1,2} x_{i} / \sigma_{i}^{2}}{\sum_{i=1,2} 1 / \sigma_{i}^{2}} \\
\sigma^{2} & =1 /\left(\sum_{i=1,2} 1 / \sigma_{i}^{2}\right)
\end{aligned}
$$

Simple Example I

- The answer is:

$$
\begin{aligned}
x & =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} x_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} x_{2} \\
\sigma^{2} & =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

- Let us rewrite this as

$$
\left\{\begin{array}{l}
x=x_{1}+K\left(x_{2}-x_{1}\right) \\
\sigma^{2}=(1-K) \sigma_{1}^{2} \\
K=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\sigma_{1}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{-1}
\end{array}\right.
$$

Simple Example I

- Notice:
- The equation

$$
x=x_{1}+K\left(x_{2}-x_{1}\right)
$$

is of the form
best estimate $=$ prediction + Kalman gain $\times($ measurement - prediction $)$

- measurement - prediction \equiv residual
- $\sigma^{2}<\sigma_{1}^{2}, \sigma_{2}^{2}$ (more measurements, less error)
- if $\sigma_{1} \rightarrow 0, x \rightarrow x_{1}$ and vice versa

Simple Example II

- The previous example had no dynamics, but for example, we could have a system where the position of the particle is given as

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=u+w
$$

where u is constant and w is a stochastic error (e.g. multiple scattering)

- In this case, if the measurement at t_{1} gave $x_{1} \pm \sigma_{1}$, then our prediction at t_{2} will be

$$
\begin{aligned}
x & =x_{1}+u\left(t_{2}-t_{1}\right) \\
\sigma^{2} & =\sigma_{1}^{2}+\sigma_{w}^{2}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

- Now given a measurement at t_{2} that is $x_{2} \pm \sigma_{2}$, our best estimate is given by the same kind of expression as before
- Notice that both the prediction error and the measurement error are combined to give an error that is smaller than both

General Form

- The evolution of the system is given as

$$
\begin{array}{lc}
x_{k}=A x_{k-1}+w_{k-1} \quad \text { prediction } \\
z_{k}=H x_{k}+v_{k} \quad \text { measurement with noise }
\end{array}
$$

- Assume the stochastic error in the prediction has covariance matrix $(n \times n) Q$
- Starting from the covariance matrix at $k-1$, the predicted covariance matrix is

$$
C_{k}^{-}=A C_{k-1} A^{T}+Q \quad \text { all } n \times n \text { matrices }
$$

- Assume the measurement has a covariance matrix $(m \times m) R$
- We would like to combine the a priori prediction x_{k}^{-}, the a posteriori measurement z_{k}, while taking into account the errors Q and R.

General Form

- The best estimate for x_{k} given the measurement z_{k} should minimize the a posteriori covariance matrix with respect to x_{k}
- The solution is the same form as in the examples,

$$
\begin{aligned}
x & =x_{k}^{-}+K\left(z_{k}-H x_{k}^{-}\right) \\
K & =C_{k}^{-} H^{T}\left(H C_{k}^{-} H^{T}+R\right)^{-1} \\
C_{k} & =(1-K H) C_{k}^{-}
\end{aligned}
$$

(compare to equations on p.6)

- Recall that H is the $m \times n$ matrix that converts the parameters x into z, i.e.,

$$
z_{k}=H x_{k}+v_{k}
$$

How This Applies to GlueX

- Kalman filter implemented in class DTrackFitterKalmanSIMD
- The parameters of interest are called S (what we called x above), and is a 5 D vector
- The dynamics of the system (A above) is the charged particles bending in the magnetic field
- The stochastic errors (Q above) associated with the update equations are multiple scattering
- We assume we know both A and Q
- The hits in the drift chambers constitute the measurements (z above)

DTrackFitterKalmanSIMD::KalmanForwardCDC

- This function sets the χ^{2} and ndof for a given region of the detector
- We want the best estimate of $\vec{S}=\left\{x, y, t_{x}, t_{y}, q / p\right\}$
- The update equation is given by the 5×5 matrix J
- The multiple scattering covariance matrix is given by Q
- Each measurement is the CDC hits, which gives 1 measurement, so that z is a 1 -dimensional vector
- The measurement "covariance matrix" is given by V, where

$$
\begin{aligned}
V & =\sigma_{\mathrm{CDC}}^{2}(d m)+v_{\mathrm{CDC}}^{2} \sigma_{t_{0}}^{2} \\
d m & =v_{\mathrm{CDC}} \times\left(t_{\mathrm{drift}}-t_{\mathrm{hit}}-t_{0}\right)
\end{aligned}
$$

DTrackFitterKalmanSIMD::KalmanForwardCDC

- Putting all this together:

expression	code
$C^{-}=A C A^{T}+Q$	$C=J C J^{T}+Q$
$x=x^{-}+K\left(z-x^{-}\right)$	$S=S+K(d m-d)$
$C=(1-K H) C^{-}$	$C=(1-K H) C$
$K=C^{-} H\left(H C^{-} H^{T}+R\right)^{-1}$	$K=C H\left(H C H^{T}+V\right)^{-1}$

