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clearly identi�ed below 1.5 GeV. There are a few apparent kaons below 1 GeV

and even some deuterons can be seen. The time resolution of the hodoscope and

preshower TOF data is about 300 ps (see �gure 29) which using equation (72) leads

to a theoretical maximal momentum of about 0.8 GeV for pion/kaon separation.

The time of ight information can of course also be used directly to produce a mass

spectrum (equation (73)).

The data used for �gures (31) and (32) only represent a small subset of Hermes

1995 data (about 69 runs) and are only supposed to illustrate the possibilities. For

the 1996 a thorough time of ight analysis is in progress

[27]

.

3 PID Quantities and Cuts

3.1 PID Quantities

3.1.1 Probabilities

Consider two probabilities:

1. P (AjX): Probability that a particle of type A causes the detector response X.

2. P (XjA): Probability that a measured detector response X was caused by a a

particle of type A.

They are related in a non-trivial way.

First consider the case of a single particle type A and a single particle identi�-

cation detector. By normalising the response function of the detector to an integral

of 1 a probability distribution p(X) is obtained. The probability P (AjX) = p(X)

is given by this probability distribution, while P (XjA) = 1 as there is only the one

particle type.

Now assume there are several particle types A

i

. The probability P (A

i

jX) is still

given by the normalised detector response, but the probability to observe that a

particle A

i

causes the detector response X becomes P (A

i

) � P (A

i

jX), where P (A

i

)

is the probability that the observed particle is of type A

i

. P (A

i

jX) is now called

a conditional probability, because it is a probability under the condition that

the particle is of type A

i

. The probability P (A

i

) is in particle physics terminology

referred to as the ux factor �

i

of the particle type A

i

.

For several particle types A

i

the probability P (XjA

i

) is given by Bayes' theorem

P (XjA

i

) =

P (A

i

) � P (A

i

jX)

P

j

P (A

j

) � P (A

j

jX)

(74)

which takes the ux factors properly into account.
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For the 1995 Hermes data two particle types are of interest: hadrons and

positrons. In this case the ratio of the two ux factors � = �

h

=�

e

is often quoted.

The impact of this ux ratio on the probability P (XjA

i

) is illustrated in �gure 33

using the TRD truncated mean response for hadrons and positrons. Assuming as an

example that the measured response is 25 keV, the conditional probability P (ej25)

for a positron is clearly much larger than the conditional probability P (hj25) for a

hadron to produce this response. However, if the ux ratio is 100, the expression

P (h)�P (hj25) (dotted line) becomes larger than P (e)�P (ej25). Using Bayes' theorem

(equation (74)) it follows that P (25jh) > P (25je) although P (hj25) << P (ej25).
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Figure 33: Normalised TRD truncated mean response functions (i.e. conditional

probabilities) for hadrons and positrons (solid line) and hadron response function

scaled by ux ratios of 10 (dashed) and 100 (dotted).

3.1.2 De�nition of PID Quantities

Particle identi�cation (PID) uses the fact that di�erent types of particles cause dif-

ferent detector responses. These responses can be used directly in the data analysis

or they can be �rst converted into probabilities. The �rst case will be referred to as

'hard cuts'. A cut is a condition that is imposed on a measured quantity to select

a speci�c data sample. If probability based analysis is used, the response of each

detector must �rst be converted into a conditional probability L

i

D

that the response

of the detector D was caused by a particle of the type i. This can be done by using

distributions generated from test beam data or from clean particle samples obtained

with restrictive hard cuts on the other PID detectors in the experiment. These dis-

tributions are normalised and either used directly or by �tting with an analytical

function. In both cases the conditional probability distributions are referred to as

'parent distributions' L

i

D

. The term 'conditional probability' refers to the fact that

the parent distributions are normalised to 1.
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The conditional probabilities from several detectors D can be combined into an

overall conditional probability

L

i

=

Y

D

L

i

D

(75)

The conditional probabilities can be transformed into true probabilities P

i

that

a particular particle is of type i, if all particle uxes, represented by the ux factors

�

i

, are known. This is a nontrivial problem, since these ux factors are in general

functions of momentum and scattering angle

�

i

= �

i

(p; �) (76)

or two similar variables. Usually this problem can only be solved by a Monte Carlo

simulation of the detectors or by an iterative procedure. In the case that all ux

factors are known the probability P

i

is given by Bayes' theorem (74):

P

i

=

�

i

L

i

P

j

�

j

L

j

(77)

For the simple case of only two particle types, positron and hadron, the positron

probability is therefore given as

P

e

=

L

e

�L

h

+ L

e

(78)

where only the conditional probabilities and the ux ratio � = �

h

=�

e

have to be

known. In this case it is equivalent to create a PID parameter from the ratio of the

positron and hadron probabilities by taking the logarithm:

PID = log

10

�

P

e

P

h

�

= log

10

�

L

e

�L

h

�

= log

10

�

L

e

L

h

�

� log

10

� (79)

The advantage of this quantity is that it produces a distribution that intuitively

resembles the response of a detector. Furthermore, it is practical that PID = 0

is simply the value where a particle is equally likely to be a positron or a hadron

and therefore the natural value for a cut. If the ux ratio � is neglected, the PID

distribution is shifted by log

10

�. Therefore � can be neglected if it is not a strong

function of (p; �). Otherwise a momentumdependent cut can in principle replace the

knowledge of �. Another way to express PID is by introducing a PID parameter

for each detector

PID

D

= log

10

�

L

e

D

L

h

D

�

(80)

which results in

PID =

X

D

PID

D

� log

10

� (81)
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3.1.3 PID2, PID3, PID4

The PID quantity that is used typically for the analysis of 1995 Hermes data is

PID3 which combines the calorimeter, preshower and

�

Cerenkov responses and is

de�ned as

PID3 = PID

cal

+ PID

pre

+ PID

cer

(82)

= log

10

�

L

e

cal

L

e

pre

L

e

cer

L

h

cal

L

h

pre

L

h

cer

�

(83)

PID3 is not equivalent to the probability P

e

, because it does not include the ux

ratio. This was done so as not to bias the PID3 parameter with respect to di�erent

kinematic cuts, e.g. for DIS and photo production events. It has to be pointed out

that a cut on PID3 in this case is not in any way clearly de�ned. However, PID3

can be used as if it were the response of a single particle identi�cation detector with

excellent positron-hadron separation.

The standard particle identi�cation cut for the 1995 inclusive analysis follows the

valley between the positron and hadron distributions in the PID3-pulsTRD plane,

where pulsTRD is the truncated mean signal of the TRD. A more detailed descrip-

tion can be found in the section 'Hermes PID Cuts' (5.3).

The PID parameters PID2 and PID4 are sometimes used as well. They are

de�ned in an analogous way to PID3. While PID2 uses only the calorimeter and

the preshower, PID4 also includes the TRD truncated mean. For 1995 PID4 is

constructed using parent distributions for positrons and hadrons generated from

pulsTRD spectra. They include no momentum dependence. A full probability anal-

ysis of the TRD has been done

[28]

and will be included in the future as PID5 and

PID6. Figure 34 shows PID2, PID3 and PID4 for comparison. The large impact of

the TRD is apparent in the di�erence between PID3 and PID4.

The probability analysis is only as good as the parent distributions that it uses.

If they do not resemble the data closely, the produced probability or PID quantity

is not correct. Also it should be remembered that the PID quantity as de�ned in

equation (79) is only useful for the case of two particle types. For a larger number

of particle types the full probability analysis must be used. As an alternative, the

number of parent distributions could be increased. For example for three types of

particles (i=positron, pion, kaon) six parent distributions could be used (positron,

not-positrons, etc.) for each detector to de�ne three PID parameters.

PID

i

D

= log

10

 

L

i

D

L

6=i

D

!

(84)

The disadvantage of this method is the increase in the number of necessary parent

distributions, while the distributions may be somewhat easier to interpret.
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Figure 34: Comparison between the PID parameters PID2, PID3 and PID4. Data

from one run (4220). The separation of the hadron (< 0) and positron peaks (> 0)

clearly improves from PID2 to PID4.

3.1.4 Parent Distributions

The parent distributions L

i

det

for the calorimeter, the preshower and the

�

Cerenkov

detector are given as analytical expressions that were �tted to test beam or Hermes

data. The TRD parent distributions were obtained originally from a Monte Carlo

simulation that was tuned to CERN test beam results. They were later replaced

by distributions generated from the 1995 Hermes data, mostly due to an observed

di�erence in the positron distributions with respect to the test beam data related

to the use of di�erent radiators. The next sections give a detailed de�nition of the

parent distributions for each detector.
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3.1.5 Calorimeter
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Figure 35: Calorimeter parent distributions for 5 GeV hadrons and positrons (line)

in comparison to data (histogram)

The measured calorimeter energy E

cal

and the ratio R

cal

= E

cal

=p of calorimeter

energy and momentum are the parameters used for the calorimeter parent distribu-

tions. The calorimeter is calibrated so that

hR

cal

i = 1 (85)

The electron spectrum is modeled as a Gaussian distribution with an additional

high energy tail:

L
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=
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(86)
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with constants C

e1

; C

e2

. The energy resolution of the calorimeter �E

cal

as well as

the spectrometer resolution �p determine �:

� =

q

�E

2

cal

+�p

2

with �E

cal

= a+

b

p

p

(87)

where a and b are �t parameters. The hadron parent distribution is set to a constant

(C

�

) for hadron energies below the trigger threshold E

thr

. Above the threshold it is

described by an exponential decline:

L

h

cal

=

(

C

�

for E

cal

� E

thr

C

�

e

�C

�

(R

cal

�

E

thr

p

)

for E

cal

> E

thr

(88)

The calorimeter parent distributions for 5 GeV hadrons and positrons can be seen in

comparison to data in �gure (35). Here the data have been normalised to the same

integral as the parent distribution. It is apparent that the data are not adequately

described by the model. The positron distribution is in principle correct, but uses

the wrong resolution. The hadron distribution is wrong because it does not take the

inuence of the trigger into account. The exponential decline describes the hadron

spectrum in E

cal

=p in principle well. However, the trigger threshold at 3.5 GeV has

a drastic e�ect on the shape of the spectrum, by suppressing the low energy part.

This is depicted in �gure (36), which also can be understood as a slice of the lower

plot in �gure (5).
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Figure 36: 5 GeV hadrons scaled so that the lower part (squares) or the higher part

(circles) of the data �ts the exponential function used as parent distribution. This

illustrates the e�ect of the trigger on the calorimeter (E/p) hadron distributions.


