
Linux ROCs

GE V7865/V7875 SBC

v7865 v7875

Intel Core Duo

2 GHz (667 MHz FSB)

1-3 GB DDR2 SDRAM

Intel Core 2 Duo

2.5 GHz (1066 MHz FSB)

1-4 GB DDR3 SDRAM

USB 2.0

2 ports 4 ports

Dual GbE Network ports
Bootable Compact Flash port (up to 4GB)

Optional Transition Module 2 USB, 2 SATA, DVI-D Optional VITA 41.3 (2 ethernet ports via P0)

VME 320 (Tempe chip -support for 2eVME and 2eSST)

4 timers (2 microsec resolution)
Watchdog timer
32KB User accessable NVRAM
Thermal Probes

Linux ROCs - Performance

	V7865 (2 GHz, DDR2)	V7875 (2.5 GHz, DDR3)	MV6100 (1.3 GHz, DDR)
Time from external signal in the TI to the User ISR/Callback: Interrupt Response	44 µs	29 µs	7.5 µs
Polling Response	4.5 μs	2.5 µs	2.5 µs
VME Single Cycle Transfer:	270 no	270 22	460 no
Write Read	370 ns 2.6 µs	370 ns 1.5 μs	460 ns 1.0 μs
DMA Latency:	_	_	
Setup/Start Finish/Error Check	9 μs 25 μs	5 μs 18 μs	4 μs 22 μs
"Break Even" size	60 bytes	64 bytes	108 bytes
Network: Max Throughput ROC -> EB	(12% CPU) 116 MB/s 75 MB/s	(5% CPU) 116 MB/s 75 MB/s	(100% CPU) 79 MB/s 35 MB/s

VME Bridge Driver

<u>jvme</u>

- JLab implemention of VME bridge API (kernel and userspace)
- Written to easily switch APIs (currently uses GEFanuc Proprietary v4.0)
- Routines and arguments mirror those of vxWorks
 - e.g. sysBusToLoclAdrs -> vmeBusToLocalAdrs

Functionality

- Maps VME windows (A16/A24/A32) to USERSPACE
- Maps VME Bridge registers to USERSPACE
 - Provides lower latency for setup and finish of DMA
 - Maps System Memory to USERSPACE for DMA data to Readout Lists
- Provides USERSPACE routine links to kernel level VME interrupts

Available Module Drivers:

FADC250, F1TDC, FlexIO, TI, TS, c1190/1290, vmeDSC

Future Developments

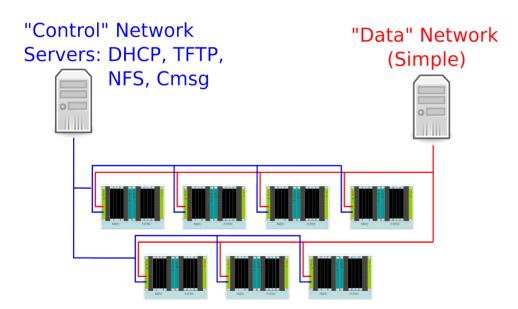
- Performance enhancements with more up-to-date kernels?
 - Mostly worked with 2.6.18 (RHEL5)
 - ◆ Some testing with 2.6.32 (FC12+RT)... but no significant improvement in performance
 - Benchmarking underway with home-built 2.6.34
- New CPUs (Intel Core i7, DDR3) available soon from several vendors
 - 2-2.5 GHz (1066 MHz FSB), 64bit, hyperthreading
 - GE Intelligent Platforms XVB601
 - ◆ Emerson iVME7210
 - Concurrent VP717

Discussion Points - VME data

<u>User Access to VME Module Data</u>

- ★ Process access to VME Bus
 - * Must obey API (semaphore) that prevents readout during Trigger Routine
 - * Modules must support this. A single FIFO probably won't work.
 - * If the process crashes, it will deadlock the Trigger Routine (and vice versa).

- * Process access to CODA Readout List Buffers
 - * Accumulate data from primary/secondary readout list
 - ★ Must know data format (headers, masks, etc)
 - ★ Too much data handling may slow down readout list and cause deadtime.
 - ★ No CODA run... No data.



Discussion Point - Filesystem

Onboard Flash or attached Harddisk

- Small scale DAQ
- Kernel and OS locally installed
- Optional (Could use NFS):
 - CODA locally installed
 - Data Stored locally

Network Boot and NFS

- PXEboot kernel and mount OS over NFS
 - Read-Only: /boot, /usr, /lib, /var ...
 - Write: /etc, /home

<u>Available software (under review):</u>

- System-config-netboot (RedHat)
- DRBL

