## Charged Pion Polarizability Update

David Lawrence JLab Mar. 11, 2013

### **Experimental Setup**



- Photon reconstruction irregularities
- Kinematic fitting improvement to angular resolution
- Triggering on pions with FCAL
- Muon background

#### Generated and reconstructed energy of $\pi^{\rm 0}$ and $\gamma$



#### Generated and reconstructed $\theta$ of $\pi^{\rm 0}$ and $\gamma$



#### Generated and reconstructed $\varphi$ of $\pi^{\rm 0}$ and $\gamma$







- Photon reconstruction irregularities
- Kinematic fitting improvement to angular resolution
- Triggering on pions with FCAL
- Muon background



- angular resolutions needed to separate Primakoff (signal) from background (primarily coherent rho)
- Plugin using Paul M.'s new ANALYSIS package has been written, but no results to report today



- Photon reconstruction irregularities
- Kinematic fitting improvement to angular resolution
- Triggering on pions with FCAL
- Muon background

# Triggering

- Currently thinking FCAL may be critical component for triggering π +π- events
- Apparent energy of hadrons may be larger than dE/dx
  - (Lubomir helping with some M.C. calculations)
  - Hoping to get some cosmic data this summer
- Hadronic background rate may be higher than anticipated, but thresholds can be raised (GlueX plans call for 30MeV threshold)

#### Muons and Hadrons in NOMAD

D. Autiero et al. / Nuclear Instruments and Methods in Physics Research A 387 (1997) 352–364



#### Software Level-1 Event filter

// BCAL and FCAL
bool sum\_cut = (Ebcal + 4.0\*Efcal)>=2.0;
trig->L1a\_fired = sum\_cut && Ebcal>0.200 && Efcal>0.030;
trig->L1b\_fired = sum\_cut && Ebcal>0.030 && Efcal>0.030 && Nschits>0;



- Event is kept if either L1a\_fired or L1b\_fired is true
- 38% of events discarded by software L1 trigger (original L1 study rejected ~53%)
- 0.1% of events in coherent peak region discarded by L1 trigger
- 13.3% of L1 accept events in coherent peak region
- Trigger implemented in TRIGGER library (DMCTrigger objects)
   *hd\_eventfilter*

#### Hadrons in PHENIX Calorimeter

L. Aphecetche et al. / Nuclear Instruments and Methods in Physics Research A 499 (2003) 521–536

|            | pions  | protons |
|------------|--------|---------|
| 0.15 GeV/c | 25MeV  | -       |
| 1 GeV/c    | 460MeV | 80MeV   |
| 4 GeV/c    | 540MeV | 540MeV  |

Cerenkov threshold: 
$$\beta_t = \frac{1}{n}$$
  
 $p_t = m\beta_t\gamma_t = \frac{m\beta_t}{\sqrt{1-\beta_t^2}}$   
 $p_t = \frac{m}{\sqrt{1/\beta_t^2 - 1}} = \frac{m}{\sqrt{n^2 - 1}}$ 

 $\frac{\text{TF1 PbGlass: n=1.648}}{\text{proton } p_t = 716 \text{MeV/c}}$   $pion p_t = 107 \text{MeV/c}$ 

*"At 500 MeV/c no significant signal is observed for protons ..."* 



Fig. 12. Measured energy signal for protons,  $\pi^+$  and  $e^+$  of 1 GeV/*c* incident momentum. The lower panel shows the fraction of  $e^+$  accepted or  $\pi^+$  rejected for a varying threshold on the measured energy.

- Photon reconstruction irregularities
- Kinematic fitting improvement to angular resolution
- Triggering on pions with FCAL
- Muon background

### $\mu$ + $\mu$ - background



- Sergey G. has calculated crosssections
- Currently comparing to what is in hdgeant