PS flux update

Justin Stevens Beamline Meeting: 9.11.17

* Used the same MC (with no background) for efficiency

* Something wrong with flux, or changing efficiency?

* Determine un-tagged coherent peak flux in units y/s for every run and compare low/high (100/150 nA) current

* PS flux scales with beam current as expected

* Determine tagged coherent peak flux in units γ/s for every run and compare low/high (100/150 nA) current

* PS flux scales with beam current as expected

π^0 efficiencies: different beam currents

- * Generate 1M π^0 events and measure efficiency for:
 - * No EM background
 - hdgeant EM background
 - * Mix random triggers with simulation for background

Summary

- Scaling of un-tagged and tagged flux between 100 and 150 nA electron beam currents validates relative flux for spring 2017
- Introducing backgrounds to π⁰ MC does give a reduced efficiency, but does not depend as strongly on intensity as the difference observed in the data
- * Beni started looking at PS code, needs to be studied with Sasha's improved reconstruction also
 - * The PS-Tagger energy match cut is currently a little tight, meaning flux will increase slightly

Backup

- * Lower acceptance in Spring 2017 and peak shifted to lower energy as expected for lower field setting
- * Appears 2017 TAGH energy scale is incorrect (old e⁻ beam endpoint?)
 - * For flux estimates rescale x-axis by ratio of endpoints (11.65/12.05)

PS acceptance: 2016 vs 2017

- * Lower acceptance in Spring 2017 and peak shifted to lower energy as expected for lower field setting
- * Appears 2017 TAGH energy scale is incorrect (old e⁻ beam endpoint?)
 - * For flux estimates rescale x-axis by ratio of endpoints (11.65/12.05)

- * Reasonable agreement between low and high beam current runs for Spring 2016
- * For Spring 2017 find smaller γp→π⁰p yields relative to tagged flux, decreases for higher intensity

CCDB implementation

- * Tagged PS photon flux determined for runs 11366-11663 with RCDB: @is_prodution and @status_approved
- * Loaded to private ccdb.sqlite file and tool written to produce flux histograms with arbitrary energy binning
- **Location:** /group/halld/Users/jrsteven/psflux/plot_flux_ccdb.py
- * Command:

python plot_flux_ccdb.py -b 11366 -e 11555

- * Output: Photon flux vs beam energy integrated over the run boundaries provide by the user
- * Still needed: other parameters in CCDB (eg. PS accept. func., etc.)

Beam photon flux: definitions

*** Un-tagged flux:**

- * Flux of photons through the collimator, incident on the target
- * Useful for comparison to predictions for collimated rate from coherent bremsstrahlung generators

$$Flux(E_{\gamma}) = \frac{N_{PS}(E_{\gamma})}{Acceptance_{PS}(E_{\gamma}) \cdot Livetime_{PS}} \cdot \frac{1}{\frac{7}{9}RL_{conv}}$$

* Tagged Flux:

* Flux of photons through the collimator, incident on the target, with a coincident TAGM/TAGH hit

* The relevant quantity for cross section measurements

$$Flux(E_{\gamma}) = \frac{N_{PS+TAG}(E_{\gamma})}{Acceptance_{PS}(E_{\gamma}) \cdot Livetime_{PS}} \cdot \frac{1}{\frac{7}{9}RL_{conv}}$$

Cross sections and Normalization

$$\sigma = \frac{N}{\epsilon \cdot \mathcal{L}} = \frac{N}{\epsilon \cdot \text{Un-tagged flux} \cdot \text{Target thickness}}$$
$$\frac{\text{Tagged Flux}}{\text{Un-tagged Flux}} = \frac{N_{PS+TAG}(E_{\gamma})}{N_{PS}(E_{\gamma})} = \epsilon_{TAG}$$

* Tagger efficiency cancels when normalizing event yield (N) by tagged flux

$$\sigma = \frac{1}{\epsilon_{non-TAG} \cdot \epsilon_{TAG} \cdot \frac{\text{Tagged Flux}}{\epsilon_{TAG}} \cdot \text{Target thickness}}$$

 \mathcal{N}

Cross sections and Normalization

$$\sigma = \frac{N}{\epsilon \cdot \mathcal{L}} = \frac{N}{\epsilon \cdot \text{Un-tagged flux} \cdot \text{Target thickness}}$$
$$\frac{\text{Tagged Flux}}{\text{Un-tagged Flux}} = \frac{N_{PS+TAG}(E_{\gamma})}{N_{PS}(E_{\gamma})} = \epsilon_{TAG}$$

* Tagger efficiency cancels when normalizing event yield (N) by tagged flux

$$\sigma = \frac{1}{\epsilon_{non-TAG} \cdot \epsilon_{TAG}} \cdot \frac{\text{Tagged Flux}}{\epsilon_{TAG}} \cdot \text{Target thickness}}$$

 ΛT

- * Provide Tagged Flux (or luminosity) in bins of E_y for each run, and analyzers determine **yield** and **non-tag efficiency**
- * Target thickness ~1.22 b⁻¹ for a 29.2 cm LH₂ target

- * Acceptance function from Sasha's TAC analysis, presented at PrimeX review (slide 10 of link below)
- Radiator thickness not explicitly measured, so ratio of 508 um Al and 75 um Be converters is an uncertainty in the flux determination (2016 only)

https://cnidlamp.jlab.org/RareEtaDecay/JDocDB/system/files/biblio/2016/07/beamline_trigger.pdf

Beamline Meeting: 9.11.17

Justin Stevens, WILLIAM & MARY 16

- * Correct raw PS yield for Livetime, which is uniform vs Event number within a run (this is an example for run 11529)
- * 75 μ m Beryllium converter has radiation length of 2.1x10⁻³