Offline Analysis SRC/CT experiment

Nathaly Santiesteban September 09/2021

Production Overview (SWIF)

Paul Mattione - GlueX Software Review - November 10, 2016

Remarks

- Current plugins don't use the Hall D framework. Avoid using mass/momentum kinematic fit in the primary vertex.
- The offline analysis is run parallel to the online analysis but only the SRC/CT experts will look into these results.
 The plan is to analyze the first X number of events for each run in Jlab. X is to be determined with the Hall D experts.
 Bates could be a possibility to analyze the full runs.

$\gamma p \to \rho p \to \pi^+ \pi^- p$

Data Selection Port 1

Runs: 30333, 30334, 30336, 30337, 30564, 30728, 40903, 41386, 41615, 51011, 51013, 51556

Reconstruction Plugin

- Location: /w/halld-scifs17exp/halld2/home/nathaly/test/ halld_recon/src/plugins/src-test/2pi1p
- Generates a root file with the information of all candidates: *Position, Momentum, CDC, FDC, TOF .. information
- The most relevant characteristics are described in the following couple of slides

1. Hypothesis Selection

• Only 3 Charged Tracks and No Showers events:

if (ch tracks.size()==3) return NOERROR:

• Particle Hypothesis are determined by the GetHypotheses function: Definition:

Hypothesis accepted if probability > 1E4 based in the timing information.

2. Vertex Fit

• For each Hypothesis the Vertex Fit is performed:

Only includes the charged tracks hypothesis.

///// Kinematic fit
DKinFitUtils_GlueX *dKinFitUtils = new DKinFitUtils_GlueX(loop); DKinFitter *dKinFitter = new DKinFitter(dKinFitUtils);
dKinFitter->Reset_NewFit();
<pre>set<shared_ptr<dkinfitparticle>> FinalParticles, NoParticles;</shared_ptr<dkinfitparticle></pre>
shared_ptr <dkinfitparticle>myProton=dKinFitUtils->Make_DetectedParticle(proton_track); shared_ptr<dkinfitparticle>myPiMinus=dKinFitUtils->Make_DetectedParticle(pi_min_track); shared_ptr<dkinfitparticle>myPiPlus=dKinFitUtils->Make_DetectedParticle(pi_plus_track);</dkinfitparticle></dkinfitparticle></dkinfitparticle>
FinalParticles.insert(myProton); FinalParticles.insert(myPiMinus); FinalParticles.insert(myPiPlus);
<pre>// Production Vertex constraint set<shared_ptr<dkinfitparticle>> locFullConstrainParticles; locFullConstrainParticles.insert(myPiPlus); locFullConstrainParticles.insert(myPiMinus); locFullConstrainParticles.insert(myProton);</shared_ptr<dkinfitparticle></pre>
<pre>shared_ptr<dkinfitconstraint_vertex> locProductionVertexConstraint = dKinFitUtils->Make_VertexConstraint(locFullConstrainParticles, NoParticles, proton_track->position()); dKinFitter->Add_Constraint(locProductionVertexConstraint); // PERFORM THE KINEMATIC FIT dKinFitter->Fit_Reaction(); //GET THE FIT RESULTS double CL = dKinFitter->Get_ConfidenceLevel();</dkinfitconstraint_vertex></pre>

Example of PiMiums tracking information (same apply for the other hypothesis):

const DChargedTrackHypothesis *hyp_pi_min = thisHyp[PiMinus][0]; const DTrackTimeBased *pi_min_track = hyp_pi_min->Get_TrackTimeBased();

Final Events Section 2

Runs: 30333, 30334, 30336, 30337, 30564, 30728, 40903, 41386, 41615, 51011, 51013, 51556

Macro can be found in: /w/halld-scifs17exp/halld2/home/nathaly/test/scripts/read_2pi1p_candidates.C

1. Reconstructed candidates selection

TLorentzVector hyp1pim(pX_piminuskinfit[0],pY_piminuskinfit[0],pZ_piminuskinfit[0], E_piminuskinfit[0]); TLorentzVector hyp1pip(pX_pipluskinfit[0],pY_pipluskinfit[0],pZ_pipluskinfit[0], E_pipluskinfit[0]); TLorentzVector hyp1p(pX_protonkinfit[0],pY_protonkinfit[0],pZ_protonkinfit[0], E_protonkinfit[0]); TLorentzVector hyp1rho = hyp1pim + hyp1pip;

- Mass of the reconstructed rho: $0.6 < m_{\rho} < 1.$ [GeV]
- Coplanarity between ρ and p: $160 < \Delta \phi (\rho p) < 200 \deg$
- Reconstructed Energies in the range that are expected for $E_{\gamma} > 7 GeV$ $E_{\rho} + E_p > 7 GeV$

2. Photon information

• $E_{\gamma} > 7$ GeV (only events above that energy were taken to select the in-time and off-time photons).

•
$$|dE| < 1$$
 GeV, where $dE = E_{\gamma} + m_p - E_p - E_{\pi^+} - E_{\pi^-}$

- Final Candidates: TLorentzVector pPim(pX_pim,pY_pim,pZ_pim,E_pim) TLorentzVector pPip(pX_pip,pY_pip,pZ_pip,E_pip) TLorentzVector pP(pX_p,pY_p,pZ_p,E_p) TLorentzVector Ep(0,0,bmE[j],bmE[j]) TLorentzVector rho = pPim + pPip s = (pPim+pPip+pP)*(pPim+pPip+pP) t = -(Ep-rho)*(Ep-rho) u = -(Ep-pP)*(Ep-pP); In-time Photons $\Delta t = t - \left(t_{RF} + \frac{Z_{vtx} - Z_{Center}}{29.9792458}\right) < 2ns$
 - t: Time from the vertex fit

t_{RF} : Time from the beam to the center of the target: vector<const DBeamPhoton*> beam_ph; loop->Get(beam_ph); beam_ph[ii]->time();

 Z_{vtx} : Z position from the vertex fit

 Z_{center} : Z position from the center of the target (65 cm)

•
$$t > -1GeV^2$$
, $u > -1GeV^2$

2. Miss-reconstructed PiPlus and Proton

• The miss-reconstructed Pi+ and Protons are suppressed by using: $m_{\pi^- p}^2 > 5 \text{ GeV}^2$

Example of simulated events reconstructed by purposely

exchange of PiPlus <-> Proton

 ω is the angle in the Van Hove Plots

Г

3. Accidentals Subtraction

Of all variables that required the beam energy, the accidentals are subtracted:

Only in-time photons are selected

Example:

4. Comparing data with simulation

0.2

0.4

0.6

0.8

P____1.4 P__{miss} [GeV]

1.2

Note: The simulation is area normalized to match the data

