Positioning and Non Uniformity of the DiRC Geometry

Errors and Reconstruction

- Need to study effects of errors on reconstruction
- 2 Types of errors
 - Errors we know and errors we don't
 - That is, measured deviation from nominal to and the error on this calibration

Method

- Used the method of generating pdfs on the fly presented last week
- Perpendicular tracks w/ 160k generated photons per pdf – 4.5 GeV
- Checked 4 different angles
- Evaluated by comparing ROC curve to Gaussian spread curves to get mrads of separation

- 1 Upper Wedge Angle
- 2 Focusing Mirror Angle

3

- 3 PMT plane Angle
- 4 Readout Box Angle

Check Misalignment

- Check what happens if the angles are wrong
- Assume we know where they are to infinite precision, but off of the design by some amount of degrees
- Very small effects unless the acceptance changes

Separation (mrad) vs Wedge Angle offset (deg)

Separation (mrad) vs Focusing Mirror Angle offset (deg)

Separation (mrad) vs PMT Plane Angle Offset (deg)

Separation (mrad) versus Readout Box Angle (deg)

Non uniformity

- Assume that we don't know the geometry perfectly
- Generate the pdfs from the perfect geometry
- Simulate each event with a geometry slightly different (changed by a Gaussian with some spread)
- Plot the separation versus this spread

Much more sensitive

Separation (mrad) versus Wedge Nonuniformity (deg)

Separation (mrad) versus Focusing Mirror uncertainty(deg)

Separation (mrad) vs PMT plane angle uncertainty (deg)

Separation (mrad) vs Readout Box angle uncertainty (deg)

Mirror Radius

- Also tried changing the mirror radius
- A flatter mirror improved reconstruction slightly
- Also vastly increased instrumentation area
 ~2/3 increase over the focusing mirror (1200mm)

Separation (mrad) Versus Mirror radius

xy val of intercepted points - pion

xy val of intercepted points - pion

