PIDFOM purity studies Simon Taylor / JLab

- Particle gun: throw π^{-1} 's at discrete values of momentum (0.5, 1.0, 2.0 GeV/c)
 - θ={1°,121°}, z={50 cm,80 cm}
 - Require reconstructed track within 3σ (p_x , p_y , and p_z) of thrown momentum
 - Select hypothesis with highest PIDFOM
 - No check on PIDFOM value yet provides denominator for purity fraction
 - Numerator: counts for which highest PIDFOM above cut corresponds to a given particle hypothesis

Directories containing Geant4 results:

/cache/halld/halld-scratch/REQUESTED_MC/ParticleGun/pim_0.5gev_g4_20190225111012am/ /cache/halld/halld-scratch/REQUESTED_MC/ParticleGun/pim_1.0gev_g4_20190225113031am/ /cache/halld/halld-scratch/REQUESTED_MC/ParticleGun/pim_2.0gev_g4_20190225113945am/

0.5 GeV/c pions

No cut on **PIDFOM** Signal purity for thrown pions

PIDFOM cut = 0.01 for all hypotheses

Signal purity for thrown pions

1.0 GeV/c pions

No cut on **PIDFOM**

Signal purity for thrown pions

PIDFOM cut = 0.01 for all hypotheses

Signal purity for thrown pions

2.0 GeV/c pions

No cut on **PIDFOM**

Signal purity for thrown pions

PIDFOM cut = 0.01 for all hypotheses

Signal purity for thrown pions

Proton simulations

- Particle gun: throw protons at discrete values of momentum (0.5, 1.0 GeV/c)
 - θ={1°,121°}, z={50 cm,80 cm}
 - Require reconstructed track within 3σ (p_x , p_y , and p_z) of thrown momentum
 - Select hypothesis with highest PIDFOM
 - No check on PIDFOM value yet provides denominator for purity fraction
 - Numerator: counts for which highest PIDFOM above cut corresponds to a given particle hypothesis

Directories containing Geant4 results:

/cache/halld/halld-scratch/REQUESTED_MC/ParticleGun/proton_0.5gev_g4_20190301032442pm/ /cache/halld/halld-scratch/REQUESTED_MC/ParticleGun/proton_1.0gev_g4_20190304114354am/

0.5 GeV/c protons

No cut on PIDFOM

Signal purity for thrown protons

PIDFOM cut = 0.01 for all hypotheses

Signal purity for thrown protons

1.0 GeV/c protons

Summary

- Likelihood of correctly identifying pions depends on momentum and angle
 - Decreases from about 70%
- Likelihood of false kaon and anti-proton IDs increases with momentum, especially at back angles
- False electron ID more common at low angles and momenta
 - Electron identification needs more work...
- Likelihood of correct proton ID drops dramatically in the CDC \rightarrow FDC transition region near 20°

