Analysis of Time Information from 2006 BCAL Cosmics Runs

Andrei Semenov & Irina Semenova (U. of Regina)

Data Set

4 runs from /work/halld/bcal06 directory:

<u>Run #</u>	Trigger Position (cm
2458	+100
2459	+150
2475	- 50
2476	- 150

<u>Time calibration as it was on Autumn 2007 !</u>

Mean Time-of-Flight & Event Selection

To eliminate the tagger influence, we use the difference between mean times from 2 segments in the column:

 $ToF = (T_{N2}+T_{S2})/2 - (T_{N1}+T_{S1})/2$

			osmic Ray Direction		
<10	1		<10		
<10		2	<10		
<10	>	70	<10		
	V				

Selection of "muon" event

Time-Walk Correction

Successive event-by-event correction of "ToF" value on 4 amplitudes (viz., A_{N1} , A_{S1} , A_{N2} , and A_{S2}) with the function:

ToF (A) = $P_0 + P_1^*(A)^{-1/2} + P_2^*(A)^{-1/3}$

Summary over 4 Runs

Trigger Position Dependence

We assume that the time resolution of a <u>SINGLE</u> segment for the <u>CENTRAL-POSITION</u> muon hit can be written in the form:

$$\sigma_{t1}^2 = (\sigma_{tN1}^2 + \sigma_{tS1}^2)/4 = \frac{C^2}{N_{pe}} + B^2 = \frac{A^2}{\Delta E} + B^2$$

Time resolution for the <u>PAIR</u> of segments for the muon hit in x cm from the segment center :

In theory, we can separate the Energy-term and the Floor-term.

The Floor-term is smaller than the Energy-term for MIP energy deposition in fibers.

Projection to Photon Beam Test

If we assume ΔE_{fiber} / E_{γ} = 0.129 :

$$\sigma_{t} = \frac{(79.3 \pm 4.7) \text{ ps}}{\sqrt{E_{\gamma} (\text{GeV})}} \oplus (0.000002 \pm 211) \text{ ps}$$

To-Do List

- ✓ Analysis for every pair of segments separately => more accurate result
- ✓ Analysis of the shape of ToF distribution => independent way to access the Energy-term and the Floor-term
- ✓ We have 3 pairs of segments per column => we can extract an individual time resolution of each segment