




# Status of the Trigger Performance during Spring 2017: Part I

A. Somov, Jefferson Lab March 29, 2017

# **Analysis Overview**

- Study hardware performance in spring 2016
  - Trigger emulation
  - Yield of mesons ( $\rho$ ,  $\pi$ ,  $\omega$ ) for different trigger types
  - Trigger efficiency
- Simulation of L1 trigger

# **Main Triggers in Spring 2017**

Bit 1
 
$$25 E_{FCAL} + E_{BCAL} > 45000$$
 $47 kHz$ 

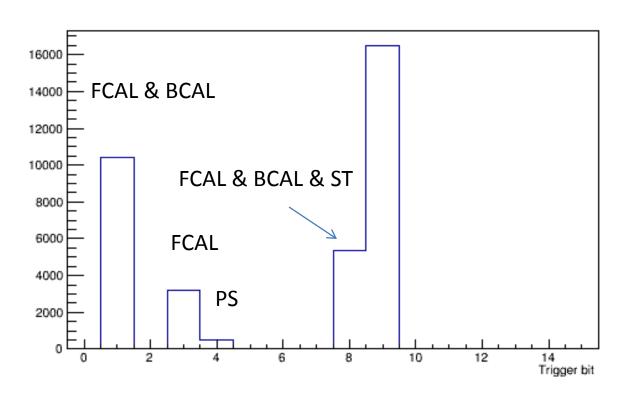
 ( $E_{FCAL} + 0.5 E_{BCAL} > 0.5$ )
  $13 kHz$ 

 Bit 3
  $E_{BCAL} > 54000$ 
 $13 kHz$ 

 Bit 4
 PS
  $2.24 kHz$ 

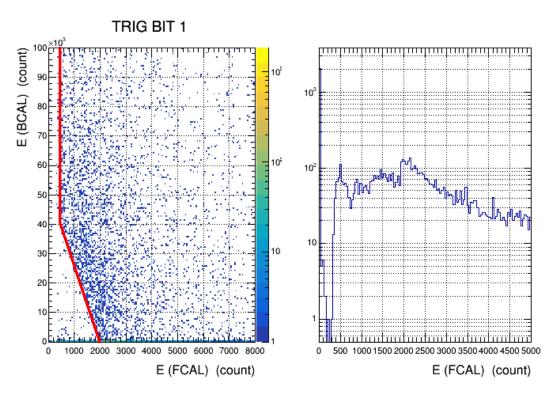
 Bit 8
 ( $E_{FCAL} + E_{BCAL}$ ) & ST
  $21 kHz$ 

 Bit 9
 TAGH & ST
  $339 kHz$  (prescaling 65)


225 nA,  $3 \cdot 10^{-4}$  X<sub>0</sub> Al, 5 mm collimator, 75 um Be, DAQ rate: 60 kHz, Live time 95 %

More stringent threshold on BCAL energy

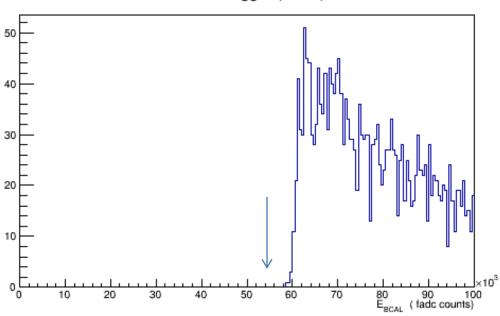
- 30 % smaller rate compared to runs in Spring 2016


### FCAL & BCAL

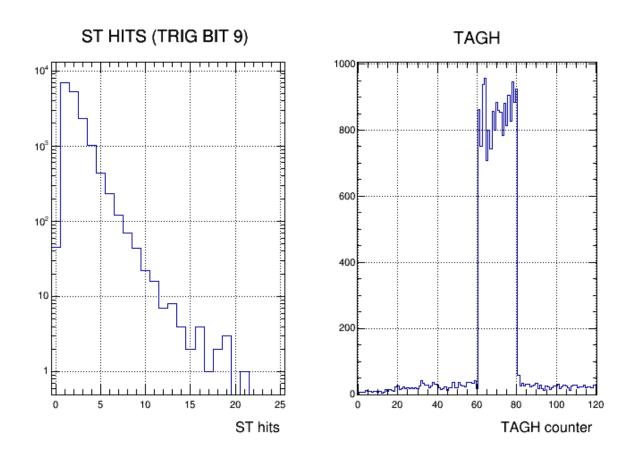
TAGH & ST




#### FCAL & BCAL


Check trigger performance using recorded data (reproduce thresholds)




Relatively good agreement (missing hits in FCALHit when fadc timing algorithm failed) Use raw data verify hardware performance

# **BCAL Trigger**





# **TAGH & ST Trigger**



20 TAGH counters in coincidence with ST - large accidental rate at high-lumi

# **Yield of ρ Mesons for Various Trigger Types**

#### Event selection

- one  $\pi^-$  candidate and two charged tracks in the event
- one proton candidate based on dE/dx
- extrapolate tracks to the FCAL or BCAL, require cluster matching
- require no energy deposition in the FCAL / BCAL (except from three tracks)

# Efficiency for Events with 3 tracks $(\pi\pi p)$



Efficiency > 95 % (based on small data sample)

fraction of rho candidates for TAGH & ST trigger:

- 10 % small lumi
- 0.5 % at high lumi(225 nA, presc 65)(17 cand per 1 M triggers)

Comparison of FCAL & BCAL & ST and FCAL & BCAL: - relative efficiency 98 %

# Simulation of L1 trigger

- Interface with the RCDB (GTP, FADC settings, masked channels) and CCDB (energy calibration, peak to integral, etc.)
  - add table for masked channels (Dmitry)
- Currently testing