TOF Performance

$$
t_{v}=t_{d}-t_{f}
$$

use detector information to predict time at vertex and match to known event start time -- get 0 if the correct particle hypothesis is used to to calculate t_{f}

$$
\begin{aligned}
& \sigma\left(t_{d}\right)=\frac{1}{\sqrt{2}} 100 \mathrm{ps} \\
& t_{f}=\frac{L}{\beta c}=\frac{L}{c} \sqrt{1+\frac{m^{2}}{p^{2}}} \\
& \frac{\sigma\left(t_{f}\right)_{p}}{t_{f}}=\frac{m^{2}}{p^{2}-m^{2}} \frac{\delta p}{p} \\
& \frac{\sigma\left(t_{f}\right)_{L}}{t_{f}}=\frac{\delta L}{L}
\end{aligned}
$$

this is the TOF detector resolution, includes TDC
one must measure the flight path L and momentum p to predict t_{f} (assume errors on L and p are uncorrelated)
contribution to the flight time error from the momentum resolution, which has been carefully studied
contribution to the flight time error from the path length resolution

Tracking Resolution

3% momentum resolution seems reasonable in forward direction What is the path length error? (How well is field known and does it matter?) PID Review Report assumes a path length error of I cm

Preliminary Study

- Compare measured path length from tracking with thrown path length
- Plots of std-dev of the difference from Simon using:
- Pion tracks
- Assume location of TOF is known to infinite precision -realistic contribution $\mathrm{I}-5 \mathrm{~mm}$
- $\quad \mathrm{lcm}$ total seems reasonable?
- Study does not probe dependence on systematic errors in magnetic field

σ of path length difference

Resolution Contributors

K/ π Separation

At $4 \sigma \mathrm{~K} / \pi$ separation the difference between Icm and 3 cm path length error is substantial!
Assume TOF provides 4σ to 2 GeV to be conservative?

Kaon Kinematics

