Cluster reconstruction in the FCAL

March. 23, 2010 Mihajlo Kornicer Indiana University

Short overview of clustering mechanism

- Iterative procedure uses fcal-hits sorted by energy
- Each iteration is two-step process
 - 1. find seeds for new clusters based on seed-threshold function, calculated from all existing clusters for a given seed-candidate
 - 2. assign hits to clusters based on shower-profile function that estimates expected energy from each cluster
- Iteration terminates when cluster-topology does not change from previous assignment of energies and positions
- details in NIM A 570 (2007) 384

Cluster functions

New coordinates (u, v) rotated by cluster azimuth:

- cluster center $(u_0, v_0) = (r_0, 0)$ where r_0 is radial distance from *z*-axis
- $u = x \cos \phi + y \sin \phi,$ $v = -x \cos \phi + y \sin \phi.$

core

- Expected energy from a cluster with energy E_C :
- $\sigma_v =$ Molier radius (~ 3.7 cm)

$$\sigma_{u} = \sigma_{v} + (8 \cdot \theta)^{4}$$
$$f_{E}(\theta, u, v) = E_{C} \cdot \exp\left\{-\frac{1}{2}\left[\left(\frac{u - u_{0}}{\sigma_{u}}\right)^{2} + \left(\frac{v - v_{0}}{\sigma_{v}}\right)^{2}\right]^{2}\right\}$$

Seed-threshold function from a cluster seeded by E_s :

• $a_v = 4.5 + 0.9 \log(E_C + 0.05)$ • $a_u = a_v + (10 \cdot \theta)^2$ $f_T(u, v) = 2E_s \exp\left\{-\frac{1}{2}\left[\left(\frac{u - u_0}{\sigma_u}\right)^2 + \left(\frac{v - v_0}{\sigma_v}\right)^2\right]^2\right\}$ tail \rightarrow + $[0.2 + 0.5 \log(E_s + 1)] \exp\left\{-\frac{1}{2}\left[\left(\frac{u - u_0}{a_u}\right)^2 + \left(\frac{v - v_0}{a_v}\right)^2\right]^{\frac{1}{2}}\right\}$ prevents large-distance off-shoots from

prevents large-distance off-shoots from creating split-off cluster

Parameters

- MIN_CLUSTER_BLOCK_COUNT (default 2)
- MIN_CLUSTER_SEED_ENERGY (default 35 MeV)
- MAX_CLUSTER_RADIUS (default 25 cm)
- transverse and longitudinal widths (σ_v, σ_u) and (a_v, a_u)

Important notes:

- seed-threshold and expectation functions are not meant to reproduce exact shower shape
- clustering mechanism designed in all-neutral environment of the RADPHI

 $\gamma p \rightarrow p X \rightarrow \pi^- b_1 \rightarrow \pi^+ \omega \rightarrow \pi^0 \rho \rightarrow \pi^+ \pi^-$

