Photoproduction of $b_{1}(1235)$ meson in GlueX

Karthik Suresh ${ }^{1}$
 Ahmed Foda, Zisis Papandreou

Department of Physics University of Regina

October 23, 2020

Overview

* Motivation
* b_{1} Event Selection in GlueX
* b_{1} PWA Model
- Angular distribution of the b_{1} meson
- Monte Carlo Event generation of b_{1}
* Next steps

Motivation

Motivation

Exotics $\pi_{1}(1600)^{a}, \pi_{1}(2015)^{b}, h_{0}(2400)$ and $b_{2}(2500)$ could possibly decay to $b_{1} \pi$ where b_{1} decays into $\omega \pi$. In order to precisely measure the exotics, we need to understand the precisely the decay of $b_{1}(1235)$

GlueX searches for hybrid meson spectrum in the mid-high energy regime (6 - 12 GeV) could measure the complete kinematics of the mentioned exotics.

> aReported by E852, VES, COMPASS, and CBAR
> ${ }^{\text {bR }}$ Reported by E852

b_{1} (1235)

Flavourless meson: "b" a meson of spin zero and odd orbital momentum. Subscript is

$\mathrm{b} 1(1235)$	$1^{+}\left(1^{+-}\right)$
Mass	$1229.5 \pm 3.2 \mathrm{MeV}(\mathrm{S}=1.6)$
Width	$142 \pm 9 \mathrm{MeV}(\mathrm{S}=1.2)$

Motivation \& History (cont.)

History of the b_{1} (1235) Photo production (in the 1980s)

Omega-Photon
Collaboration

SLAC-S.H.F.P Collaboration

$\omega \pi^{0}$ mass distributions from Omega-Photon Collaboration [1] (Left) and SLAC-H [2] (right) experiments : modest statistics

b_{1} Event Selection in GlueX

b_{1} Photo production reaction

$$
\begin{equation*}
\gamma p \rightarrow p b_{1}(1235) \rightarrow p \omega \pi^{0} \rightarrow p \pi^{+} \pi^{-} \pi^{0} \pi^{0} \tag{1}
\end{equation*}
$$

All final state particles are detected in the experiment π^{0} is restricted in the range $[0.08,0.19] \mathrm{GeV}$
The analysis is done on data from the Fall 2017 run period

Event Selection Cuts

Figure 2: Sample Data cuts that are applied on to data. On the left is the Missing Mass square cut made at $\pm 0.05 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. On the right is the standard $\left(\frac{d E}{d X}\right)_{\text {proton }}$ cut

b1 Event Selection in GlueX (cont.)

Omega-Photon Colab

S.H.F.P Colab

Invariant Mass of $\omega \pi$ events

Figure 3: Reconstructed $\omega \pi$ events. The $\mathrm{M}(\omega \pi)$ events are not acceptance corrected. Vertical errors bars are contained in the points. A high statistics channel

$\omega \pi$ Helicity Frame

Normal to
Decay Plane

$\omega \pi$ decay plane
θ and ϕ describe the decay kinematics of ω in the $\omega \pi$ helicity frame.

$\omega \pi$ Helicity Frame (cont.)

$$
\begin{aligned}
& \text { Proton } \\
& 3 \pi \text { decay plane } \\
& \theta_{H} \text { and } \phi_{H} \text { describe the decay kinematics of normal }(\hat{n}) \text { to three- } \\
& \text { pion }(\omega) \text { decay plane in its helicity frame }
\end{aligned}
$$

Amplitude Analysis Model

Intensity I is given by

$$
\begin{equation*}
I=\frac{1}{2}\left(1-P_{\gamma}\right)\left|e^{i \phi} A_{+}+e^{-i \phi} A_{-}\right|^{2}+\frac{1}{2}\left(1+P_{\gamma}\right)\left|e^{i \phi} A_{+}-e^{-i \phi} A_{-}\right|^{2} \tag{2}
\end{equation*}
$$

Amplitude Analysis Model (cont.)

Polarisation fraction

Production angle

$$
\left.\left.I=\frac{1}{2}\left(1-\left(P_{\gamma}\right)\right)\left|e^{i \phi} A_{+}+e^{-i \phi} A_{-}\right|^{2}+\frac{1}{2}\left(1+P_{\gamma}\right) \right\rvert\, e^{i \phi}\right) A_{+}-\left.e^{-i \phi} A_{-}\right|^{2}
$$

Where $A_{ \pm}$can be expressed as

$$
A_{\lambda_{\gamma}}=\sum_{J_{i}=0,1,2}^{\omega \pi \text { Spin }} \sum_{\eta_{i}=-1,1}^{\left.\omega \pi \text { Parity } \omega \pi \sum_{\Lambda=-J_{i}, . ., J_{i}} V_{\lambda_{\gamma}, \Lambda}^{G J} \sum_{\lambda=-1,0,1}^{\omega \text { SpinProj }} D_{\Lambda, \lambda}^{J_{i}}(\Omega) F_{\lambda}^{i} D_{\Lambda, 0}^{1}\left(\Omega_{H}\right) G\right) \text { icity }}
$$

Amplitude Analysis Model (cont.)

Where $A_{ \pm}$can be expressed as

$$
A_{\lambda_{\gamma}}=\sum_{J_{i}=0,1,2}^{\omega \pi \text { Spin }} \sum_{\eta_{i}=-1,1}^{\omega \pi \text { Parity }} \sum_{\Lambda=-J_{i}, . ., J_{i}}^{\omega \pi \text { SpinProj } V_{\lambda_{\gamma}, \Lambda}^{G J} \sum_{\lambda=-1,0,1}^{\omega \text { Helicity }} D_{\Lambda, \lambda}^{J_{i}}(\Omega) F_{\lambda}^{i} D_{\Lambda, 0}^{1}\left(\Omega_{H}\right) G}
$$

$$
V_{\lambda_{\gamma}, \Lambda}^{G J}
$$

Vertices

$$
D_{\Lambda, \lambda}^{J_{i}}\left(\Omega \text { or } \Omega_{H}\right)
$$

Wigner function with Ω and Ω_{H} being decay angles in Helicity frame

F_{λ}^{i} Helicity amplitudes

$$
F_{\lambda}^{i}=\sum_{I=0,1,2}^{\text {PartialWaves }}\left\langle J_{i} \lambda \mid I 0,1 \lambda\right\rangle C_{l}^{i}
$$

Amplitude Analysis Model (cont.)

$J^{P C}$ states of $0^{-}, 1^{ \pm}, 2^{ \pm}$and the partial waves $I=0,1,2$ could potentially reproduce the angular distibution of the $\omega \pi$. The total fit parameters corresponding to these are

- 17 Vertices ($V_{\lambda_{\gamma}, \Lambda}^{i}$) which depends on Mandelstam t , beam energy and $M(\omega \pi)$
- 6 partial wave amplitudes $C_{/}^{i}$ that depend only on $M(\omega \pi)$
- 4 Dalitz parameters $\alpha, \beta, \gamma, \delta$

Angular distribution of the b_{1} meson

$$
1.185<M(\omega \pi)<1.285 \mathrm{GeV} / \mathrm{c}^{2}
$$

The distributions are not corrected for acceptance

Figure 4: Distribution of $\mathrm{M}(\omega \pi)$ in various decay angles $\left(\Omega, \Omega_{H}\right)$

Monte Carlo Event generation of b_{1} (Not for DNP 2020)

- Worked closely with the JPAC Theory group ${ }^{2}$ on the model development and had implemented a preliminary model by fixing majority of the parameters.
- The amplitude generator does seem to produce desired distributions to the first order.

In order to test the developed generator,

- A sample of 4 vectors are generated using the gen_omegapi generator with a specific $J^{P C}$ state.
- Then use AmpTools to fit the generated MC to extract the parameters ($V_{\lambda \gamma, \wedge}^{i}, C_{l}^{i}$).
- These extracted parameters has to be equal to the parameters given during generation.

[^0]
Example MC generation (Not for DNP 2020)

A sample of 4 vectors are generated using the gen_omegapi generator with the following conditions

Parameters used to generate MC

- $\mathrm{M}\left(b_{1}=1.235 \mathrm{GeV}\right)$
- $\Gamma\left(b_{1}\right)=0.142 \mathrm{GeV}$
- $\mathrm{M}(\omega)=0.782 \mathrm{GeV}$
- $\Gamma(\omega)=0.008 \mathrm{GeV}$
- orbital-I between ω and $\pi^{0}=0$
- Pol. Frac $=0.4$
- $C_{0}^{1+}=1$
- $\operatorname{Re}\left(V_{+1,-1}^{+1}\right)=1.0$
- $C_{2}^{1+}=0.27$
- $\operatorname{Re}\left(V_{+1,0}^{+1}\right)=1$
- $\operatorname{Re}\left(V_{+1,+1}^{+1}\right)=0.5$
- $\operatorname{Re}($ Uniform $)=0.01$
- $\operatorname{Im}\left(V_{+1,-1}^{+1}\right)=0.0$
- $\operatorname{Im}\left(V_{+1,0}^{+1}\right)=0.0$
- $\operatorname{Im}\left(V_{+1,+1}^{+1}\right)=0.0$
- $\operatorname{Im}($ Uniform $)=0.0$

Example MC fit (Not for DNP 2020)

The generated sample events are fit using AmpTools.
Some of the parameters are fixed during fitting (in green) and other parameters are calculated (in red)

AmpTools Fit results

- $\mathrm{M}\left(b_{1}=1.235 \mathrm{GeV}\right)$
- $\Gamma\left(b_{1}\right)=0.142 \mathrm{GeV}$
- $\mathrm{M}(\omega)=0.782 \mathrm{GeV}$
- $\Gamma(\omega)=0.008 \mathrm{GeV}$
- orbital-I between ω and $\pi^{0}=0$
- $C_{0}^{1+}=1$
- $\operatorname{Re}\left(V_{+1,-1}^{+1}\right)=257.26$
- Pol. Frac $=0.4$
- $C_{2}^{1+}=0.27$
- $\operatorname{Im}\left(V_{+1,-1}^{+1}\right)=25.553$
- $\operatorname{Re}\left(V_{+1,0}^{+1}\right)=259$
- $\operatorname{Re}\left(V_{+1,+1}^{+1}\right)=83.113$
- $\operatorname{Re}($ Uniform $)=0.008$
- $\operatorname{Im}\left(V_{+1,0}^{+1}\right)=0.0$
- $\operatorname{Im}\left(V_{+1,+1}^{+1}\right)=-29.867$
- $\operatorname{Im}($ Uniform $)=0.0$

S + D Wave Fit (Not for DNP 2020)

Invariant Mass of $\omega \pi^{0}$

$\cos \theta$ _H

Ф_H

S Wave Fit (Not for DNP 2020)

Invariant Mass of $\omega \pi^{0}$

$\cos \theta$

$\cos \theta$ _H

Invariant Mass of $\pi^{+} \pi^{-} \pi^{0}$

Φ

D Wave Fit (Not for DNP 2020)

Invariant Mass of $\omega \pi^{0}$

$\cos \theta$

$\cos \theta H$

Invariant Mass of $\pi^{+} \pi^{-} \pi^{0}$

Ф

Ф_H

Summary and Next Steps

Summary

- GlueX maps the meson spectrum and search for exotics. The b_{1} meson is important part of measuring the lightest hybrid multiplet, because hybrids decay into $b_{1} \pi$
- $\operatorname{Cos}\left(\theta_{H}\right)$ distribution for signal MC and Fitted MC do not match, This issue is being investigated
- Preliminary angular distribution of the b_{1} meson is produced using the 2017 data.
- A preliminary model for angular distribution has been developed and is being rigorously tested.

Current Analysis

- Analysing the same 2017 data with acceptance correction
- Working closely with JPAC ${ }^{a}$ to fully develop and test the amplitude model and implementing in the GlueX framework
- Working on solving the discrepancy in the $\operatorname{Cos}\left(\theta_{H}\right)$ distribution in fitting.
${ }^{a}$ A. Sczepaniak et. al JPAC

Summary and Next Steps (cont.)

Next steps

- Once the generator is rigorously tested, need to fit the same (MC) with setting the C_{l}^{i} as free parameters and calculating them by fitting.
- Should move on to perform fitting on the data to extract the fit parameters
- To start with, intending to do a fit by constraining the Mass of the $M(\omega \pi)$ system and setting the C_{l}^{i} free.
- C_{i}^{l} depends only on $M(\omega \pi)$. Therefore, intending to restrict the beam energy in a narrow coherent region and limit the t range to extract the C_{j}^{i}. thereby extracting the D / S ratio for the $1+$ state

Bibliography

[1] M. Atkinson et al., "Diffractive Photoproduction of a $b_{1} \pi$ System," Z. Phys. C, vol. 34, p. 157, 1987.
[2] S. H. F. P. Collaboration, "Production and decay properties of the $\omega \pi^{0}$ state at $1250 \mathrm{mev} / c^{2}$ produced by $20-\mathrm{gev}$ polarized photons on hydrogen," Phys. Rev. D, vol. 37, pp. 2379-2390, 9 May 1988. Doi: 10.1103/PhysRevD.37.2379. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevD.37.2379.

Backups

Event Selection List

- Kin. Fit Confidence level $>10^{-5}$.
- Missing Mass Squared $<$ $0.05 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
- PID ΔT Cuts (FCAL, BCAL, ST and TOF)
- Four momentum Kinematic fit for neutral particles
- $P_{\text {recoil }}>350 \mathrm{MeV}$
- Standard $\left(\frac{d E}{d X}\right)_{\text {proton }}$ curve cut
- Target vertex cuts: 52 cm $<\mathrm{Z}<78 \mathrm{~cm}, \mathrm{R}<1 \mathrm{~cm}$
- $E_{\text {beam }}>6.5 \mathrm{GeV}$
- Four-momentum + vertex kinematic fit for charged particles

Backups (cont.)

Accidental and Background Subtractions

- Accidental Subtraction: 3 accidental peaks on either side of the coincidence peak ($\frac{\text { coincidence }}{\text { accidentals }}=\frac{1}{6}$)
- 6σ wide ω and 2 side-bands on either side of the $1-\sigma$ wide $\left(\frac{\text { peak }}{\text { side-band }} \frac{6}{2}=3\right)$

Figure 6: $\mathrm{M}(\omega \pi)$ distribution at every stage of subtraction

Backups (cont.)

Accidental and Background Subtractions

- Accidental Subtraction: 3 accidental peaks on either side of the coincidence peak $\left(\frac{\text { coincidence }}{\text { accidentals }}=\frac{1}{6}\right)$
- 6σ wide ω and 2 side-bands on either side of the $1-\sigma$ wide $\left(\frac{\text { peak }}{\text { side-band }} \frac{6}{2}=3\right)$

Figure 7: Weighting the events based on their occurrence in the plot for accidental and background subtraction

Backups (cont.)

Dalitz Function

The Dalitz function can be written as

$$
G(Z, \theta)=\sqrt{1+2 \alpha Z+2 \beta Z^{3 / 2} \operatorname{Sin}(3 \theta)+2 \gamma Z^{2}+2 \delta Z^{5 / 2} \operatorname{Sin}(3 \theta)}
$$

where \mathbf{Z}, θ are defined as

$$
Z=\sqrt{x^{2}+y^{2}}, \theta=\frac{y}{Z}
$$

and the Mandelstam variables of the ω decay are defined as

$$
s=\left(p_{\omega}-p_{\pi^{0}}\right)^{2}, t=\left(p_{\omega}-p_{\pi^{-}}\right)^{2}, u=\left(p_{\omega}-p_{\pi^{+}}\right)^{2}
$$

where x, y are defined as

$$
x=\frac{\sqrt{3}(t-u)}{2 M\left(M-3 m_{\pi}\right)}, y=\frac{3\left(s_{c}-s\right)}{2 M\left(M-3 m_{\pi}\right)}
$$

Backups

With the $J^{P C}$ of $0^{ \pm}, 1^{ \pm}, 2^{ \pm}$for the $\omega \pi$ and partial wave $I=0,1,2$; one can reproduce the complete $\omega \pi$ spectrum.
The fit parameters corresponding to the states and partial waves are:

- 12 Vertices $V_{\lambda_{\gamma}, \wedge}^{i}$
$-0^{-} \rightarrow V_{+1,0}^{0^{-}}$
- $1^{+} \rightarrow V_{+1,-1}^{1^{+}}, V_{+1,0}^{1^{+}}, V_{+1,+1}^{1^{+}}$
- $1^{-} \rightarrow V_{+1,-1}^{1-}, V_{+1,0}^{1^{-}}, V_{+1,+1}^{1^{-}}$
$-2^{+} \rightarrow V_{+1,-2}^{2^{+}}, V_{+1,-1}^{2^{+}}, V_{+1,0}^{2^{+}}, V_{+1,+1}^{2^{+}}, V_{+1,+2}^{2^{+}}$
$-2^{-} \rightarrow V_{+1,-2}^{2-}, V_{+1,-1}^{2-}, V_{+1,0}^{2-}, V_{+1,+1}^{2-}, V_{+1,+2}^{2-}$

Backups (cont.)

- 6 real partial wave amplitudes C_{1}^{i}
- $\mathrm{O}^{-} \rightarrow \mathrm{C}_{1}^{0-}$
- $1^{ \pm} \rightarrow C_{1}^{1-}, C_{0}^{1+}, C_{2}^{1+}$
$-2^{ \pm} \rightarrow C_{1}^{2-}, C_{2}^{2+}$
- Four Dalitz parameters α, β, γ and δ.

Backups (cont.)

D Wave Fit (Without Signal) (Not for DNP 2020)

Backups (cont.)

Testing the generator against JPAC Theory predictions.

$$
A_{\lambda_{\gamma}}=\sum_{J_{i}=0,1,2}^{\omega \pi \text { Spin }} \sum_{\eta_{i}=-1,1}^{\omega \pi \text { Parity }} \sum_{\Lambda=-J_{i}, ., J_{i}}^{\omega \pi \text { SpinProj }} V_{\lambda_{\gamma}, \Lambda}^{G J} \sum_{\lambda=-1,0,1}^{\omega \text { Helicity }} D_{\Lambda, \lambda}^{J_{i}}(\Omega) F_{\lambda}^{i} D_{\Lambda, 0}^{1}\left(\Omega_{H}\right) G
$$

Below are the parameters that are kept constant for the study

- $\operatorname{Spin}(J)=1$
- $\omega \pi$ Parity $(\eta)=+1$
- Spin Projection $\left(J_{z}\right.$ or $\left.\Lambda\right)=+1,0,1$
- Helicity $(\lambda)=+1,0,1$
- All the vertices are turned off except $\mathrm{V}(+1,0)$ and $\mathrm{V}(-1,0)$ are set to constant
- $C_{I}^{i}=(0,0,1)$
- We can now turn on or off the differential partial waves (turn on \mathbf{F} for each λ) in the formula for F. F has three parts $F(\lambda=-1)$, $F(\lambda=0), F(\lambda=1)$

Backups (cont.)

M vs. $\cos 9$
M vs. $\cos 9$

Figure 8: Testing the generator and JPAC predictions

Testing the generator against JPAC Theory predictions.

$$
A_{\lambda_{\gamma}}=\sum_{J_{i}=0,1,2}^{\omega \pi \text { Spin }} \sum_{\eta_{i}=-1,1}^{\omega \pi \text { Parity }} \sum_{\Lambda=-J_{i}, . ., J_{i}}^{\omega \pi \text { SpinProj }} V_{\lambda_{\gamma}, \Lambda}^{G J} \sum_{\lambda=-1,0,1}^{\omega \text { Helicity }} D_{\Lambda, \lambda}^{J_{i}}(\Omega) F_{\lambda}^{i} D_{\Lambda, 0}^{1}\left(\Omega_{H}\right) G
$$

Below are the parameters that are kept constant for the study

- $\operatorname{Spin}(J)=1$
- $\omega \pi$ Parity $(\eta)=+1$
- Spin Projection $\left(J_{z}\right.$ or $\left.\Lambda\right)=+1,0,1$
- Helicity $(\lambda)=+1,0,1$
- All the vertices are turned off except $\mathrm{V}(+1,0)$ and $\mathrm{V}(-1,0)$ are set to constant
- $C_{I}^{i}=(1,0,1)$
- We can now turn on or off the differential partial waves (turn on \mathbf{F} for each C_{l}^{i}).

Backups (cont.)

M vs. $\cos 9$

M vs. $\cos 9$

Figure 9: Testing the generator and JPAC predictions

[^0]: ${ }^{2}$ A. Sczepaniak et. al JPAC

