

CLASI2 Analysis Readiness

R. De Vita for the CLAS Collaboration

Jefferson Lab Software Review

November 10, 2016

Outline

- Reconstruction & Calibration validation using pseudo-data
 - GEMC: Realistic detector simulations
 - Reconstruction validation and usage
 - Calibration development and testing
- Data analysis workflow & preparation:
 - Analysis workflow
 - Event generators and background simulations
 - Physics analysis example
 - Analysis organization
- Timeline

Realistic detector simulations

- Scintillators attenuation lengths
- Drift Chamber cell inefficiencies, Residuals
- Resolution parameters
- Same constants as real data: actual calibration constants

CCDB	To be put in CCDB
FTOF	BST
CTOF	MVT
EC	HTCC
PCAL	LTCC
DC	FT
	CND

- Realistic geometry description
- Active and passive materials
- CAD drawing conversion for most complicated elements
- Same geometry for reconstruction

JLAB Software Review, 11/10/2016

Event Reconstruction

Single track resolution and multi-track event reconstruction

Event Reconstruction

π^0 reconstruction from forward EM calorimeters

JLAB Software Review, 11/10/2016

Calibration & Monitoring

Development of calibration and monitoring applications in an advanced stage for both baseline and ancillary CLAS12 subsystems:

- Calibration and monitoring software is based on COATJAVA
- Algorithm development supervised by the CLAS12 calibration & commissioning group (CALCOM)
- Implementation supervised by the software group
- Tests on both cosmic ray and simulated data
- Preparations for first Calibration Challenge (Dec. 2016) in progress

EC-Pcal (UVA/Jlab)	MM (Sacl
FTOF (Glasgow, Iowa, Jlab)	SVT (Jlab)
LTCC (Temple, Jlab)	CTOF (G
DC (Mississippi,JLAB)	CND (O
HTCC (FIU, Uconn, Jlab)	FT (INFN

MM (Saclay) SVT (Jlab) CTOF (Glasgow, Jlab) CND (Orsay, Glasgow) FT (INFN, Edinburgh)

Calibration Tools

Status: Now ready for Feb. 17 KPP

Timeline: I) December 12-16, 2016: Calibration challenge II) Beginning 2017: Document and tutorials III) June 2017: ready for physics (First experiment in Fall 2017) Baseline equipment

Ancillary equipment

EC/PCAL calibration

Validation of MIP Calibration Algorithm

- Fits to simulated data used to evaluate cuts and thresholds.
- Estimate time needed to accumulate sufficient statistics.
- Estimate accuracy of gain and attenuation extraction.

Expected MIP

- Simulated Attenuation
- Fit to GEMC simulation

Alignment of the SVT using Millepede

Data Analysis Scheme

JLAB Software Review, 11/10/2016

Event selection tool

Collection of algorithms and procedures to select events from reconstruction output and build DSTs for specific final states:

- Select golden runs and files
- Select events for specific final state
- Apply:
 - kinematic corrections
 - fiducial cuts
 - ...
- Output DST files with:
 - fully corrected 4-vectors for physics analysis
 - detector related info for refinement of PID and signal selection
 - luminosity and helicity related info
- Implement file tagging for easy data handling and distribution inspired by the CLAS data mining project

Physics Event Generators

Generated events available for calibration and reconstruction tests, and physics studies:

- INCLUSIVE ep \rightarrow e'X generator
- SIDIS LUND MC (PYTHIA and PEPSI)
 - Generating (claspyth) low Q2 events for hadronic background and PID studies using modified **PYTHIA**
 - Generate (clasDIS) single and double-spin dependent processes using the modified PEPSI (LEPTO)
- Exclusive events
 - exclusive γ (DVCS), π/η using GPD models
 - exclusive eKA, ep $\pi\pi$,...

CLASI2 Analysis Readiness

45

40

30

20

15

stuno:

Simulating EM background

Can be set with gcards:

2 dis events at full luminosity

Physics analysis example

Deeply Virtual Compton Scattering

JLAB Software Review, 11/10/2016

Analysis Organization

Timeline

Summary

- Simulations ready to generate realistic pseudo data
- Reconstruction released for user to study physics reactions
- Calibration tools developed with real and pseudo data
- Analysis tools under development:
 - Event generators
 - Event selection and data handling tools
 - Full analysis of physics reactions tested
- Analysis organization and management defined
- Ready for physics in Fall 2017

Alignment of the SVT

- Track-based alignment of SVT requires fitting many parameters: $N_{sectors} \times N_{layers} \times N_{trans} \times N_{rot} = 66 \times 2 \times 3 \times 2 = 792$
- Program millepede does linear least squares with many parameters.
 - Uses matrix form of least squares method and divide the elements into two classes.
 - Global parameters the geometry misalignments. Same in all events.
 - Local individual track fit parameters. Change event-to-event.
 - Calculate first partial derivatives of the fit residuals with respect to the local (i.e. fit) parameters and global parameters (geometry misalignments).
 - Manipulate the linear least squares matrix to isolate the global parameters (geometry) and invert the results to obtain the solution.

Alignment of the SVT

- Ideal Geometry Validation and Testing
 - Calculate ideal fiducial location on each module.
 - Observed significant difference with engineering drawings - up to 100 µm.
 - Worked with engineers to correct differences.
 - Ideal geometry now well defined with parameters from engineering drawings.
- Geometry package
 - Common Java utility to access geometry for gemc simulation and reconstruction.
 - Generate shifts from ideal geometry to measured fiducial results.
 - Processing fiducial survey data in alignment shifts validating with simulated tracks.
 - Putting full inventory of material in SVT gemc simulation.

шШ

Δ

 \triangleleft