Simulations of Exotic Mesons in GlueX: Past, Present, Future

Ryan Mitchell Physics Working Group Meeting March 30, 2009

Т

Simulations of Exotic Mesons in GlueX

Why Physics Simulations?

- ... for the preparation of GlueX analysis tools.
- ... for the optimization of the detector design.
- ... to show the community the capabilities of GlueX.

This Talk:

- Key channels for the observation of exotic mesons.
- The evolution of GlueX exotic meson simulations.
- Next steps towards modernizing the simulations.

Exotic Meson Decay Channels

Our "Golden" Channels:

TABLE VI: Possible Decay Modes for Exotic Hybrids

Particle	J^{PC}	Ι	G	Possible $Modes^a$
b_0	0^{+-}	1	+	
h_0	0^{+-}	0	—	$b_1\pi$
π_1	1^{-+}	1	_	$ ho\pi, b_1\pi$
η_1	1^{-+}	0	+	$a_2\pi$
b_2	2^{+-}	1	+	$a_2\pi$
h_2	2^{+-}	0	—	$ ho\pi, b_1\pi$

^{*a*}Assuming the G = + channel $2\pi\eta$ or the G = - channels 3π or $2\pi\omega$.

... resulting in 3π , $2\pi\eta$, and $2\pi\omega$.

(Do these need revisiting?)

Follow the simulation of a few of these channels through time....

PLUS: $π_1 → ηπ$ → η'π

AND A LITTLE HARDER:

$$\begin{aligned} \pi_1 &\rightarrow f_1 \, \pi; \\ f_1 &\rightarrow a_0 \, \pi; \\ a_0 &\rightarrow \eta \, \pi. \\ (\text{i.e.}, 3\pi\eta) \end{aligned}$$

GlueX-doc-16 (May 1999): A Very Early Look at Acceptances

"HDFast" Parametric MC.

Acceptance Criteria:

- (1) tracks have at least 4 hits
- (2) photons hit the BCal or FCal

GlueX-doc-44 (CDRv3, Dec. 2000): A Toy PWA Exercise

1. Generate $\gamma p \rightarrow \pi^+ \pi^- n$ with

6 partial waves $(a_1, a_2, \pi_2, \pi_1, ...)$.

- 2. Send through the detector MC (HDFast).
- 3. Do a Toy PWA.

Notes:

- Results look good.
- Finite resolution is apparent.
- Acceptances likely overestimated.
- No background is included.

GlueX-doc-51 (Dec. 2001): A Toy PWA Leakage Study

- Generate $\gamma p \rightarrow \pi^+ \pi^+ \pi^- n$ and send through the detector MC, as before.
- Do the PWA with a different, distorted detector MC.
- Leakage into the exotic wave is less than 1%.

A similar study for $\gamma p \rightarrow \pi^+ \pi^0 \pi^0 n$ has similar conclusions.

GlueX-doc-58 (CDRv4, Nov. 2002): A Double-Blind Exotic Search

Generate an unknown set of waves for $\gamma p \rightarrow \pi^+ \pi^+ \pi^- n$.

Include an unknown fraction of exotic $\pi_1 \rightarrow \varrho \pi$ decays.

Use an unknown mass and width for the π_1 .

Send through the detector MC.

The PWA returned: ... the right fraction of π_1 (2.5%). ... the right π_1 mass and width.

GlueX-doc-264 (Sep. 2004): Expanded Acceptance Studies

"HDFast" Parametric MC.

Acceptance Criteria:

(1) tracks have at least 4 hits

(2) photons hit the BCal or FCal

(3) photon minimum energy is:20 MeV (BCal), 100 MeV (FCal)

#	State	Mass	Width	Decay		
1	η_1	1800	300	$a_1(1260)^-\pi^+ \to [\rho^\circ\pi^-]\pi^+ \to [(\pi^+\pi^-)\pi^-]\pi^+$		
2	η_1	1800	300	$a_1(1260)^-\pi^+ \to [\rho^-\pi^\circ]\pi^+ \to [(\pi^-\pi^\circ)\pi^\circ]\pi^+$		
3	π_1°	1700	400	$f_1(1285)\pi^\circ \to [a_0(980)\pi^\circ]\pi^\circ \to [(\pi^\circ\eta)\pi^\circ]\pi^\circ$		
4	π_1°	1700	400	$a_1(1260)^{\circ}\eta \to [\rho(770)^+\pi^-]\eta \to [(\pi^+\pi^{\circ})\pi^-]\eta$		
5	b_2^+	2000	300	$a_1(1260)^+\pi^\circ \to [\rho(770)^+\pi^\circ]\pi^\circ \to [(\pi^+\pi^\circ)\pi^\circ]\pi^\circ$		
6	π_1^+	1700	400	$b_1(1235)^+\pi^\circ \to [\omega(782)\pi^+]\pi^\circ \to [(\pi^+\pi^-\pi^\circ)\pi^+]\pi^\circ$		
7	h_2	2000	300	$b_1(1235)^-\pi^+ \to [\omega(782)\pi^-]\pi^+ \to [(\pi^+\pi^-\pi^\circ)\pi^-]\pi^+$		

New Modes:

Mode 3: $\pi_1(1700) \rightarrow f_1(1285)\pi^0 \rightarrow 8\gamma$

GlueX-doc-787 (March 2007): A First Look at FCal Reconstruction

Generate single photons.

Spread photons uniformly over FCal angles.

Perform full reconstruction.

Acceptance >99% for non-converting photons.

Material has a big effect (77% total efficiency, c.f. GlueX-doc-823).

NB. FDC has since reduced its material budget.

GlueX-doc-817 (May 2007): Study of $\eta\pi^0$ with FCal Reconstruction

The realistic FCal acceptance has a big effect on some channels, for example:

 $\gamma p \rightarrow \eta \pi^0 p$

Look at stand-alone MC.

Acceptance criteria:

- photons hit the FCal or BCal
- use FCal reconstruction efficiencies
- minimum energies are
 40 MeV (BCal), 100 MeV (FCal)

- A. Generated distribution
- B. Geometry (96%) + E_{min} Cuts
- C. FCal Reconstruction Efficiencies
- D-G. Reject BCal-FCal transition region from 11 to 12, 13, 14, 15 degrees.

GlueX-doc-989 (Feb. 2008): Contemporary Calorimetry

Realistic calorimeter efficiencies after BCal and FCal full reconstruction...

Single 1 GeV Photons

GlueX-doc-989 (Feb. 2008): Physics Channels with Background

- Generate $\gamma p \rightarrow \eta \pi^0 p$ and $\gamma p \rightarrow \eta 3 \pi^0 p$.
- Generate Pythia background using Pythiapredicted $\eta\pi^0$ and $\eta3\pi^0$ rates.
- Do full calorimeter reconstruction.
- Assume 100% efficiency for recoil proton.
- Balance initial and final 4-momenta.

Notes:

- *Efficiencies are lower than "HDFast"*
- Signal to background is still quite good.
- More background MC would help.
- a_0 and a_2 are correctly identified in PWA.
- Most realistic picture to date... promising...

Next Steps

- Blake and U. Regina are continuing to expand the studies on the previous slide while also working on calorimetry reconstruction.
- Simulations have come a long way since 1999.
- GlueX is ready for more realistic physics simulations:
 - Photon reconstruction is in place.
 - Single track resolutions and efficiencies are coming together.
 - A parametric MC exists combining tracking and calorimetry.
 - We should update our physics simulations with our latest knowledge of the detector.
- We should have a new set of baseline simulations for conferences, etc.
- Consistency is important. There should no longer be a reason to resort to 1999 efficiencies.
- There are many opportunities for new exotic meson simulations!