

Data/MC study of tracking efficiencies and resolutions: a first look

C. Fanelli

Thanks: S. Dobbs, J. Stevens

Details and definitions

data: ver04 REST Spring 2016 mc: sim_1_2_1 plugin: trackeff_missing (based on previous work by P. Mattione) see References

METHOD Several processes allow to study the tracking efficiency of protons and pions, e.g. proton: $\gamma p \rightarrow \pi^+\pi^-(p), \gamma p \rightarrow \pi^+\pi^-\pi^+\pi^-(p),$ pions $(\pi^{+,-}), \gamma p \rightarrow p\pi^+\pi^-\pi^-(\pi^+), \gamma p \rightarrow p\omega(\rightarrow (\pi^+)\pi^-\pi^0).$

A track is found if $\Delta P/P < 20\%$, $\Delta \Theta < 10^{\circ}$ and $\Delta \Phi < 15^{\circ}$

Caveat: only compare to track with best found/missing $\chi^{\rm 2}$

FOM found/missing

Figure 16: Matching FOM built comparing the three-momenta of time-based tracks with the missing particle.

γp->(p)4π

e.q.

Selection

plugin level

DSelector

- KinFit: P4AndVertex.
- Tracks purity: minimum number of hits 12.
- Cuts on the missing mass for each particle hypothesis.
- dE/dx cuts to separate protons form pions.
- E/p<0.5 to remove $e^{+,-}$ and keep the other charged tracks.
- Other PID cuts.
- The Z-coordinate of the tracks combination at DOCA to the beamline is required to be within the target region (50,76) cm.
- $\chi^2_{kinfit}/NDF < 1.$

Figure 8: These plots are before the accidental subtraction and after a cut on the χ^2/NDF of the kinematic fit.

Should study in beam energy bins

Background subtraction

1) "Accidentals" subtraction

Two methods (both have pros and cons):

- × dilution factor (~const)
- ✓ direct subtraction of yields
- 2) Sideband subtraction

(other dilution factor:

~ negligible correction after selection)

Efficiencies

Efficiency 2D

N.B. all histograms are **after** accidental subtractions

γp->(p)4π

The 2D plot shows only the range [0,1]. Few stats, coarse binning. Fluctuations "masked".

A better picture (with uncertainties) is in 1D projections as shown in the following.

data/mc comparison

(data/mc) scale factor 1.8 1.12 1.6 4 1.16 1.03 1.4 P [GeV/c] 1.17 0.93 3 1.2 1.02 1.08 1.30 1.10 1.25 0.95 1.04 0.8 2 0.94 1.01 0.99 1.37 1.41 1.28 1.01 0.94 0.92 1.03 1.16 0.6 0.98 0.99 1.07 1.15 1.38 1.17 1.19 1.03 1.33 1.00 0.91 0.98 1.13 1.20 0.4 1.19 1.25 1.01 0.94 0.97 1.08 1.08 1.18 1.17 1.01 1.18 1.01 0.94 0.96 1.03 1.13 1.19 1.03 1.05 0.2 0.69 0.66 0.60 0.60 0.66 0.92 1.24 0 20 40 60 0 Θ [deg] (in progress)

γp->(p)4π

Hildeney

Number of hits per track vs θ

data: run 11366

mc:

•

- sim1.2.1
 - genr8 (p4π) @9 GeV

sim1.2.1 MC has a known problem for tracks with theta > 20 deg. We can't draw many conclusions in that region.

Selection

Figure 14: These plots are before the accidental subtraction and after a cut on the χ^2/NDF of the kinematic fit

Hildeney Studles

fiildienev Siuole

Efficiency 2D

all histograms are **after** accidental subtractions

12

data/mc comparison

(data/mc) scale factor 1.8 1.24 1.15 1.6 4 1.17 1.16 1.4 P [GeV/c] 1.14 1.15 1.13 1.2 3 1.13 1.16 1.14 1.18 1.06 1.24 0.96 2 0.81.10 1.05 1.17 1.24 1.08 1.46 0.77 1.14 1.08 1.14 1.19 0.6 1.26 1.30 1.37 1.02 1.03 1.07 1.22 1.52 1.18 0.89 1.13 1.03 1.08 1.17 1.32 1.25 0.4 1.14 1.31 1.31 1.29 1.26 1.18 1.01 1.03 1.34 1.17 1.20 1.16 1.34 0.98 1.13 1.15 1.15 1.13 1.11 0.2 1.37 1.27 1.14 1.18 1.09 1.04 1.00 0 20 40 60 Θ [deg] (in progress)

γρ->p3π(π)

Resolutions

Resolution Studles

Resolution Studies

- Resolutions are channel dependent: what matters is that simulation match the data
- Caveat: compare to track with <u>best</u> found/missing χ²
- The resolution calculated combining the standard deviations of two gaussian fit (A: integral)

$$\sigma_{total}^2 = rac{A_1 \sigma_1^2 + A_2 \sigma_2^2}{A_1 + A_2}$$

(a) ΔP (measured-missing) vs P. (b) ΔP (measured-missing) vs Θ (c) ΔP (measured-missing) vs Φ

(d) $\Delta\Theta$ (measured-missing) vs P. (e) $\Delta\Theta$ (measured-missing) vs Θ (f) $\Delta\Theta$ (measured-missing) vs Φ

(g) $\Delta\Phi$ (measured-missing) vs P. (h) $\Delta\Phi$ (measured-missing) vs Θ (i) $\Delta\Phi$ (measured-missing) vs Φ

Figure 9: Resolution studies of the proton p, Θ , Φ . A tight cut on the missing squared mass around the proton has been applied, as well as the matching conditions on the complementary variables P, Θ, Φ (e.g. a plot showing ΔP has matching requirements applied on Θ, Φ). For completeness, the bins in Θ, Φ are of 0.5° and in *P* are of 50 MeV.

γp->(p)4π

(a) ΔP (measured-missing) vs P. (b) ΔP (measured-missing) vs Θ (c) ΔP (measured-missing) vs Φ

(d) $\Delta\Theta$ (measured-missing) vs P. (e) $\Delta\Theta$ (measured-missing) vs Θ (f) $\Delta\Theta$ (measured-missing) vs Φ

(g) $\Delta\Phi$ (measured-missing) vs P. (h) $\Delta\Phi$ (measured-missing) vs Θ (i) $\Delta\Phi$ (measured-missing) vs Φ

Figure 15: Resolution studies of the $\pi^+ P$, Θ , Φ . A tight cut on the missing squared mass around the pion has been applied.

Resolution Studies

Momentum Resolution: ongoing

γp->p3π(π)

matching requirements only (to be updated)

γp->(p)4π

The proton momentum resolution as a function of the polar angle.

Conclusions

Conclusions

- sim1.2.1 MC has a known problem for tracks.
- Generating a new MC sample to test this hypothesis and we expect the data/MC to agree better when that is ready.
- There may still be some residual discrepancies even with the new MC, but we have to wait to say more.
- Improve selection and do a study in energy bins.
- Compare efficiency from different channels.
- Test other approaches for subtraction.
- Eventually extend these studies to 2017 data.

References

The set of the next finated for mean next set of the se

Morrealla predictions and mark one also mention Defining (18) is to a clobud metropic (18) is to a clobud tacked one astronal Clobus tacked one astronal Clobus premier de states (18) in the clobus (18) is to a clobus states of the clobus (18) in the clobus (18) is to a clobus states of the clobus (18) in the clobus (18) is to a clobus states of the clobus (18) in the clobus (18) is to a clobus (18) in states where clobus (18) in states of the clobus (18) in mathematic (18) in mathematic (18) in the clobus (18) in mathematic (18) in the clobus (18) in mathematic (18) in the clobus (18) in mathematic (18) in mathem

- Pion tracking efficiencies P. Mattione
- Tracking studies, P. Mattione
- <u>https://meerkat.hepforge.org</u>

Backup

Filelency Studle

Efficiency 2D

γp->(p)4π all histograms are **after**

accidental subtractions

$$\epsilon_{S} = \frac{\epsilon - (1 - f_{S}\epsilon_{B})}{f_{S}}$$
$$f_{S} = D_{S} / (D_{S} + D_{B})$$

0.9

0.6 0.6

P_{miss} [GeV/c]

28

Fildency Singlet

