Data/MC study of tracking efficiencies and resolutions: a first look

C. Fanelli

Details and definitions

data: ver04 REST Spring 2016
mc: sim_1_2_1
plugin: trackeff_missing
(based on previous work by P. Mattione)

METHOD Several processes allow to study the tracking efficiency of protons and pions, e.g. proton: $\gamma p \rightarrow \pi^{+} \pi^{-}(p), \gamma p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}(p)$, pions $\left(\pi^{+,-}:\right) \gamma p \rightarrow p \pi^{+} \pi^{-} \pi^{-}\left(\pi^{+}\right), \gamma p \rightarrow p \omega\left(\rightarrow\left(\pi^{+}\right) \pi^{-} \pi^{0}\right)$.

A track is found if $\Delta P / P<20 \%, \Delta \Theta<10^{\circ}$ and $\Delta \Phi<15^{\circ}$
Caveat: only compare to track with best found/missing X^{2}
efficiency ~ found / missing

FOM found/missing

Figure 16: Matching FOM built comparing the three-momenta of time-based tracks with the missing particle.

Selection

plugin level
DSelector

- KinFit: P4AndVertex.
- Tracks purity: minimum number of hits 12 .
- Cuts on the missing mass for each particle hypothesis.
- $\mathrm{dE} / \mathrm{dx}$ cuts to separate protons form pions.
- $\mathrm{E} / \mathrm{p}<0.5$ to remove $e^{+,-}$and keep the other charged tracks.
- Other PID cuts.
- The Z-coordinate of the tracks combination at DOCA to the beamline is required to be within the target region $(50,76) \mathrm{cm}$.
- $\chi_{\text {kinfit }}^{2} / N D F<1$.

(b) The total missing Px and Py

c) Missing Mass Squared Vs Measured Miss-(d) Missing Mass Squared Vs Measured Miss ing Energy.

Figure 8: These plots are before the accidental subtraction and after a cut on the $\chi^{2} / N D F$ of the kinematic fit.

Background subtraction

1) "Accidentals" subtraction

Two methods (both have pros and cons):
x dilution factor (~const)
\checkmark direct subtraction of yields

2) Sideband subtraction
$\Delta t(R F-\gamma)[n s]$
(other dilution factor:
~ negligible correction after selection)

Efficiencies

Efficiency 2D

N.B. all histograms are after accidental subtractions

The 2D plot shows only the range $[0,1]$.
Few stats, coarse binning. Fluctuations "masked".

A better picture (with uncertainties) is in 1D projections as shown in the following.

data/mc comparison

(in progress)

$\gamma p->(p) 4 \pi$

CDC: 65-75\%
FDC: $55-80 \%$
Btw.: $55-65 \%$
$\theta \in(0,5]$

$\theta \in(25,30]$

$\theta \in(5,10]$

$\theta \in(30,35]$

$\theta \in(10,15]$

$\theta \in(15,20]$

-data
-MC
$\theta \in(20,25]$

$\theta \in(45,50]$

$\gamma p->(p) 4 \pi$
1D projections in bins of θ
(a first look)

Number of hits per track vs $\boldsymbol{\theta}$

data: run 11366
mc:

- $\quad \operatorname{sim} 1.2 .1$
- genr8 (p4r) @ GeV

sim1.2.1 MC has a known problem for tracks with theta >20 deg. We can't draw many conclusions in that region.

Selection

Missing Mass Squared $\left[\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}\right]$ (a) π^{+}Missing Mass Squared off the 3 charged π and proton.

 Total Missing Px [GeV/c]
(b) The total missing Px and Py .

(c) Missing Mass Squared Vs Measured Miss-(d) Missing Mass Squared Vs Measured Missing Energy. ing Energy.

Figure 14: These plots are before the accidental subtraction and after a cut on the $\chi^{2} / N D F$ of the kinematic fit

Efficiency 2D

all histograms are after accidental subtractions

data/mc comparison

Resolutions

Resolution Studies

- Resolutions are channel dependent: what matters is that simulation match the data
- Caveat: compare to track with best found/missing X^{2}

(a) ΔP (measured-missing) vs P. (b) ΔP (measured-missing) vs Θ (c) ΔP (measured-missing) vs Φ

(d) $\Delta \Theta$ (measured-missing) vs P. (e) $\Delta \Theta$ (measured-missing) vs Θ (f) $\Delta \Theta$ (measured-missing) vs Φ

(g) $\Delta \Phi$ (measured-missing) vs P. (h) $\Delta \Phi$ (measured-missing) vs Θ (i) $\Delta \Phi$ (measured-missing) vs Φ

Figure 9: Resolution studies of the proton p, Θ, Φ. A tight cut on the missing squared mass around the proton has been applied, as well as the matching conditions on the complementary variables P, Θ, Φ (e.g. a plot showing ΔP has matching requirements applied on $\Theta, \Phi)$. For completeness, the bins in Θ, Φ are of 0.5° and in P are of 50 MeV .

Resolution Studies

(a) ΔP (measured-missing) vs P. (b) ΔP (measured-missing) vs Θ (c) ΔP (measured-missing) vs Φ

(d) $\Delta \Theta$ (measured-missing) vs P. (e) $\Delta \Theta$ (measured-missing) vs Θ (f) $\Delta \Theta$ (measured-missing) vs Φ

Figure 15: Resolution studies of the $\pi^{+} P, \Theta, \Phi$. A tight cut on the missing squared mass around the pion has been applied.

Momentum Resolution: ongoing

```
\gammap->(p)4m
```


The proton momentum resolution as a function of the momentum.

The proton momentum resolution as a function of the polar angle.
$\boldsymbol{\gamma p - > p} 3 \pi(\pi)$

matching requirements only (to be updated)

Conclusions

Conclusions

- sim1.2.1 MC has a known problem for tracks.
- Generating a new MC sample to test this hypothesis and we expect the data/MC to agree better when that is ready.
- There may still be some residual discrepancies even with the new MC, but we have to wait to say more.
- Improve selection and do a study in energy bins.
- Compare efficiency from different channels.
- Test other approaches for subtraction.
- Eventually extend these studies to 2017 data.

- Pion tracking efficiencies P. Mattione
- Tracking studies, P. Mattione
- https://meerkat.hepforge.org

Efficiency 2D

all histograms are after accidental subtractions

$$
\begin{aligned}
\epsilon_{S} & =\frac{\varepsilon-\left(1-f_{S} \epsilon_{B}\right)}{f_{S}} \\
f_{S} & =D_{S} /\left(D_{S}+D_{B}\right)
\end{aligned}
$$

$\theta \in(0,5]$

$\theta \in(25,30]$
 - MC \quad FOM $>10^{-7}$ -
$\theta \in(5,10]$
$\theta \in(10,15]$

$\theta \in(15,20]$

$\gamma p->(p) 4 \pi$
1D projections in bins of θ
(compare to $\mathrm{FOM}>10^{-7}$)

$\theta \in(0,5]$

$\theta \in(25,30]$

$\theta \in(5,10]$

$\theta \in(30,35]$

$\theta \in(55,60]$

$\theta \in(10,15]$

$\theta \in(35,40]$

$\theta \in(15,20]$

$\underset{\substack{\text {-data } \\- \text { nc }}}{ }$

$\theta \in(20,25]$

$\theta \in(45,50]$

$\gamma p->p 3 \pi(\pi)$
1D projections in bins of θ
(a first look)

