Bethe-Heitler Data $\gamma p \rightarrow e^+e^-(p)$

Andrew Schick May 24th, 2019

Ground Level Cuts

Preselection Cuts

- 1. Default GlueX Cuts: <u>https://halldweb.jlab.org/wiki/index.php/Spring_2017_Analysis_Launch_Cuts</u>
- 2. Require E/p = 0.7 for electron and positron tracks in FCAL and BCAL

DSelector Cuts

- 1. Cut on Coherent Peak: $8.12 < E_{y} < 8.88$
- 2. Require both electron and positron tracks have hits in the FCAL
- 3. Require both electron and positron tracks have hits in the TOF
- 4. Require dMinKinFitCL > 10E-6
- 5. Eliminate NumUnusedTracks \geq 2

Additional Cuts Investigated

- 1. $-3\sigma < p/E \langle p/E \rangle < +2\sigma$ Lubomir's Cut
- 2. Eliminate Energy_UnusedShowers > 0
- 3. Eliminate CL < 0.01, 0.05

Looking for signal in invariant mass and FCAL elasticity plots

MC

0.6

0.8

1

89120 0.4076

0.2211

1.2 1.4 M_{e⁺e} Kin (GeV/c²)

0.4

0.2

0

GF

GF

 $-3\sigma < p/E - \langle p/E \rangle < +2\sigma$ Lubomir's Cut

LC

MC

89120 0.4076

0.2211

 $-3\sigma < p/E - \langle p/E \rangle < +2\sigma$ Lubomir's Cut

LC

US

CL01

NumUnusedTracks_vs_M2ekin 34018 Entries Mean x 0.4395 180-Mean y 0.2773 Std Dev x 0.1958 160-Std Dev y 0.4477 140-120-100-80-60-40-20-0 0 1 NumUnused Tracks4 0 0.2 0.4 0.6 0.8 1. Avariant Mass (GeV/22)

US

Future Analysis

- 1. How many times is the proton the Unused Track? (MC Analysis)
- 2. Fitting E/P vs FCAL Elasticity plot (should switch to P/E to make consistent)
- 3. Fitting Elasticity in Bins of Invariant Mass

New Cut Approach

1. Only cut on P/E for positron, cut on elasiticty, and fit P/E for electron