ML Challenge 5

Thomas Britton, David Lawrence

June 2020

1 Introduction

Often complex problems have solutions which require a mixture of classification, regression, and predic-
tion. For example, a self-driving vehicle must obey traffic signs (classification) and determine the level
of torque to apply to the steering wheel, the amount of acceleration, and the amount of breaking that
should be applied (regression). Additionally, decisions may be made on data gathered from a variety of
sources, not just a single array of values or a single image. Thus, in order to properly utilize A.I. to solve
more complex problems it is important to be able to synthesize data from different sources and different
types with the aim of using a combination of, say, classification and regression to accomplish a task.

2 The Challenge

The challenge, is to develop an A.l. calculator that can perform 3 basic integer operations: addition,
subtraction, and multiplication. The two integers will be single digit, non-negative, and come from the
MNIST data se The operator will be given as a string; one from the set '+7-7,"*".

To keep things more consistent with the various tutorials that can be found the MNIST the digits
will be given in array form. So, as a truncated example if the array for a 9 were:
[0,0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1] and a 1 was [0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0]
then the problem:
0,0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,-,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0
would have as its answer 8. In actuality each problem line will contain 28x28 (784) integers (representing
greyscale), a single character, and a second set of 784 integer values for a total of 1,569 entries per
problem.

2.1 Requirements

Entrants will be required to produce a testing script which loads the model and performs the analysis
necessary to produce the needed output. This script must be done in a Jupyter notebook compatible
with/run on www.jupyterhub.jlab.org; specifically the AI notebook with slurm tools. The output will be
a single column of values (the answers) with each row representing a single problem.

3 Judging

Submissions are due August 5th at noon and can be in the form of a link to github containing
the Jupyter notebook to be run or directly as a runnable ipynb file. The judges will then run
the testing script on a secret test file via the lab’s jupyter hub page. The provided ipynb MUST be
compatible with the ”ai-notebook (w/ slurm tools)” notebook image. Entrants will
have their sum of squared errors computed over all problems given. Explicitly:

> (Submission; — Correct;)*

%

0 20 0 20 0 20

Figure 1: An example of some of the members of the MNIST data set

With the winner having the smallest value. In the case of a tie the winner would be the
person who accomplished the task with the fewest number of parameters. Any submission
which utilizes built in functions (or operators) to perform the arithmetic will be disquali-
fied. All submissions must write exactly one output and must not use any mathematical
operations after the model’s output layer which precede the output for a problem. That
is to say, a submission must not sum, average, multiply etc a model’s output before the
answer is determined. It is, however, permitted to do a non-computational interpretation
e.g. looking up the label associated with a one-hot output.

4 Appendix

To aid in processing the data we are providing the following function which reads in the
data from the zipped files. This is not required and there are many ways to do it.

def load_data():
rootdir=""
setname="train-images-idx3-ubyte.gz”
labelname="train-labels-idx1-ubyte.gz"

images = gzip.open(rootdir+setname, "rb”)
labels = gzip.open(rootdir+labelname, "rb”)

Read the binary data
We have to get big endian unsigned int. So we need ” >I”

Get metadata for images

images.read(4) # skip the magic_number
number_of_images = images.read(4)

number_of_images = unpack(”>I", number_of_images)|[0]
rows = images.read(4)

rows = unpack(”>I", rows)|0]

cols = images.read(4)

cols = unpack(”>1", cols)|0]

Get metadata for labels
labels.read(4) # skip the magic_number
N = labels.read(4)

N = unpack(”>I", N)[0]

if number_of images != N:
raise Exception(”number of labels did not match the number of images”)

Get the data
x = zeros((N, rows, cols), dtype=float32) # Initialize numpy array
y = zeros((N, 1), dtype=uint8) # Initialize numpy array
for i in range(N):
if i % 1000 == 0:
print("i: %i” % i)
for row in range(rows):
for col in range(cols):
tmp_pixel = images.read(1) # Just a single byte
tmp_pixel = unpack(”>B”, tmp_pixel)[0]
xli][row][col] = tmp_pixel
tmp_label = labels.read(1)
y[i] = unpack(”>B", tmp_label)[0]

return (x, y)

	Introduction
	The Challenge
	Requirements

	Judging
	Appendix

