η Paricle Gun, and gen_omegapi0

Benedikt Zihlmann

July 8, 2020

$\eta \mathrm{MC}$ Particle gun

Use GEANT4 particle gun and throw $6 \mathrm{GeV} / \mathrm{c} \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ at zero, five and 10 degree from $z=1 \mathrm{~cm}$ (10k Events):

1. Events FDC Pseudo hits <4 !
2. Shower multiplicity no QF cut

Number of Neutral showers

$\eta \mathrm{MC}$ Particle gun

Use GEANT4 particle gun and throw $6 \mathrm{GeV} / \mathrm{c} \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ at zero, five and 10 degree from $z=1 \mathrm{~cm}$ (10k Events):

1. Events FDC Pseudo hits <4 !
2. Shower multiplicity no QF cut
3. Shower multiplicity with some QF cut (value not important)

Number Of Neutrals with QF cut

η MC Particle gun

Use GEANT4 particle gun and throw $6 \mathrm{GeV} / \mathrm{c} \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ at zero, five and 10 degree from $z=1 \mathrm{~cm}$ (10k Events):

1. Events FDC Pseudo hits <4 !
2. Shower multiplicity no QF cut
3. Shower multiplicity with some QF cut (value not important)
4. Shower multiplicity with Fiducial Cuts

Number Of Neutrals with Fiducial cut

η MC Particle gun

Use GEANT4 particle gun and throw $6 \mathrm{GeV} / \mathrm{c} \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ at zero, five and 10 degree from $z=1 \mathrm{~cm}$ (10k Events):

1. Events FDC Pseudo hits <4 !
2. Shower multiplicity no QF cut
3. Shower multiplicity with some QF cut (value not important)
4. Shower multiplicity with Fiducial Cuts

degrees	all	6	>6
0	50%	32%	7.6%
5	42%	24%	10%
10	34%	12%	8.4%
wQF 0	50%	18%	3.8%
wQF 5	42%	16%	6.2%
wQF 10	34%	10%	6.5%
wFid 0	50%	32%	5.6%
wFid 5	42%	24%	7.4%
wFid 10	34%	12%	6.5%

η Mass

Reconstructed eta Mass at zero, five and ten degrees:

1. η at zero degree

Invariant mass of exactly 6γ 's

η Mass

Reconstructed eta Mass at zero, five and ten degrees:

1. η at zero degree
2. η at five degrees

Invariant mass of exactly 6γ 's

η Mass

Reconstructed eta Mass at zero, five and ten degrees:

1. η at zero degree
2. η at five degrees
3. η at ten degrees

Invariant mass of exactly 6γ 's

η Mass

Reconstructed eta Mass at zero, five and ten degrees:

1. η at zero degree
2. η at five degrees
3. η at ten degrees

Yield of η reconstruction:

deg.	6γ	6γ QF	6γ Fid.
0	32.4%	18.0%	32.0%
5	24.2%	16.1%	24.0%
10	12.3%	10.2%	12.0%

Invariant mass of exactly 6γ 's

BCAL, FCAL Shower multiplicity

Shower multiplicities are sensitive to FCAL/BCAL transition region.

BCAL Shower multiplicity:
BCAL Shower Multiplicities

FCAL Shower multiplicity:
FCAL Shower Multiplicities

Shower Quality Factor

QF factor (FCAL only):
QF distribution

Note the gap at low and high values.

$b 1 \rightarrow \omega \pi^{0}$

Generator gen_omegapi0 looking at $p \pi^{+} \pi^{-} \gamma \gamma \gamma \gamma$ exclusive final states. (Jon Zarling)

- Generate 8M events, After Reaction Filter 881k events
- Applying χ^{2}-cut, ω-MassCut, ... leaves 459 k events
- 98.5% have exactly 3 charged tracks
- 78.5% have exactly 4γ
- 21.5% have more than 4γ
- After applying QF cut 37% of events are left (of 459 k): 98.6% have exactly 4γ

$b 1 \rightarrow \omega \pi^{0}$

Generator gen_omegapi0 looking at $p \pi^{+} \pi^{-} \gamma \gamma \gamma \gamma$ exclusive final states. (Jon Zarling)
QF histogram looks quite different than previously shown in eta case:

Lesson Learned: DO NOT apply QF to events where you already have the correct exact number of photons. Only in those cases where you have more! this may have been obious to you aready

