The probability of scattering $p=\sigma / a_{\mathrm{int}}$, where σ is the scattering cross section and $a_{\text {int }}$ is the "area of interaction" (which will cancel in the end). The number of scattering events $N=p N_{b} N_{t}$ where N_{b} is the number of beam particles on target and N_{t} is the number of target particles in the area of interaction. So

$$
N=\frac{\sigma N_{b} N_{t}}{a_{\mathrm{int}}}
$$

$N_{t}=V \rho_{n}$ where V is the volume of the target and ρ_{n} is the number density of target particles. $V=a_{\text {int }} l$ where l is the length of the target. So $N_{t}=a_{\text {int }} l \rho_{n}$. $\rho_{n}=\rho / m_{t}$ where ρ is the mass density of the target and m_{t} is the mass of a single target particle. So $N_{t}=a_{\text {int }} l \rho / m_{t}$. If the target is a nucleus, $m_{t}=A / N_{A}$ where A is the atomic weight (in grams per mole usually) of the target particle and N_{A} is Avogadro's number. So $N_{t}=a_{\text {int }} l \rho N_{A} / A$ and

$$
\begin{gathered}
N=\frac{\sigma N_{b} l \rho N_{A}}{A} \\
N_{b}=R t
\end{gathered}
$$

where R is the beam photon time rate and t is the time of running.

