

CHEP 2019 Highlights

David Lawrence Nov. 12, 2019

Monitoring and control systems

- Community converging around two message passing options
 - FairMQ for heavy ion experiments, ZeroMQ for everyone else
- Live monitoring is a CPU-expensive task
 - Huge amount of monitoring data (often histograms), updated frequently
 - Effort is being invested into reducing computing costs
- Increasing effort to reduce shifter dependencies
 - LHCb already requires minimal shifters due to being predominantly automated
 - CMS is developing DAQExpert to resolve DAQ-related problems faster than shifters
 - Belle II is working to automate PXD and SVD DAQ, ideally reducing shifters

Trigger farms and networks

- Trigger farms seem to increasingly be integrating GPUs
 - ALICE: farm is based upon GPUs, note that no actual "trigger" rather just data compression
 - CMS: HLT farm will contain 1x GPU per server
 - LHCb: full software trigger (no hardware trigger), first level potentially fully GPU-based
- Servers and their configurations are very complex to thoroughly optimize
 - Reading the server specifications is not even close to the full story
 - ALICE presented a very nice study showing dependencies on severs and their configurations
- Trigger networks primarily studying usage of 100 Gbps, mixture of RoCE and Infiniband
 - Very few places where 200 Gbps Infiniband is used

Hardware acceleration and machine learning

- Growing usage of GPUs and FPGAs in trigger applications
- Key use-case #1: track reconstruction on GPUs or FPGAs
 - Tracks are key to success in high-pileup environments
 - ullet This is an expensive and slow process on CPUs \Longrightarrow accelerate it!
 - GPU-based tracking planned by multiple groups in the coming years (more on this later)
 - CMS has shown a FPGA-based tracking study for the hardware trigger (running at 40 MHz)
 for the HL-LHC; FPGA tracking is working up to 300 simultaneous collisions
- Key use-case #2: machine learning in FPGAs
 - Regressions, classification, etc all appear very promising to improve trigger performance
 - Integration into currently-simplistic hardware trigger algorithms allows for large gains
 - FPGA implementations of NNs studied with several different approaches: HLS4ML or direct

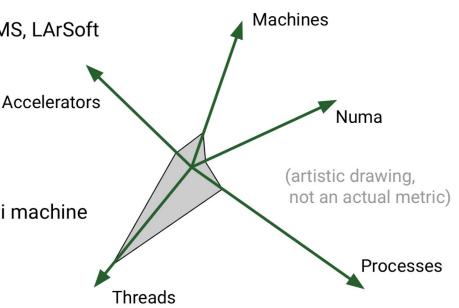
Common Problems, Common Solutions

- LHC experiments do not dominate in data volume
- FTS is de-facto THE data transfer service
- Rucio is Breaking ATLAS Boundaries
 - missing functionality contributed by comminuty

3rd Party copy (the problem)

- GridFTP (Globus Toolkit) is not supported anymore (Dec 2018)
- Working alternatives are required at all sites ...
 - DPM, StoRM, dCache, XrootD, EOS, ECHO,
 Dynafed
 - FTS, Rucio, gfal ...

Performance

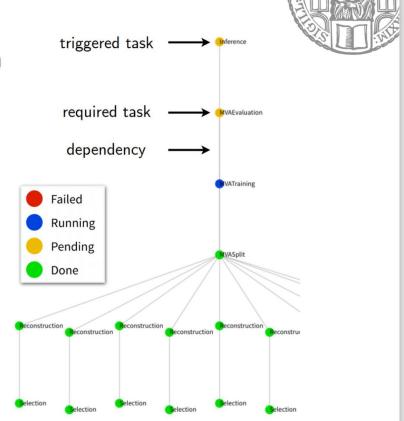


Large effort to utilize all dimensions of performance

- multithreaded frameworks established
- thread performance by e.g. ATLAS, ILC, CMS, LArSoft
- GPU effort by e.g. LHCb, CMS, ATLAS
- ⇒ Shift to optimize in multiple dimensions

Two complementary approaches

- monolithic framework augmented by multi machine workflow management (e.g. Raythena)
- loosely coupled microservice frameworks (e.g. ALFA, CLARA)



Martin Ritter

Workflow management

Evolution in workflow management automation

- shift to more and advanced automated workflow decisions
- from early in the process
 (e.g. LHCb trigger configuration)
- up to analysis level (e.g. law)
- including the big frameworks
 (e.g. ATLAS, CMS, ALFA, CLARA, ...)

Spack Package Manager

Picking up momentum in HEP

- used by FCC, Key4HEP, SupeNEMO
- FAIR moving to spack
- CMS has proof of concept
- ATLAS considering but things still to be understood
- LHCb and Belle II willing to follow

SpackDev: Multi-Package Development with Spack

"Coordinated build & test for integration, or initialize an environment for rapid build & test cycles of a particular package."

extension to Spack to help with development of interdependent packages

Martin Ritter

6

Packaging: Other Options and Use Cases

Spack is not the only possible solution

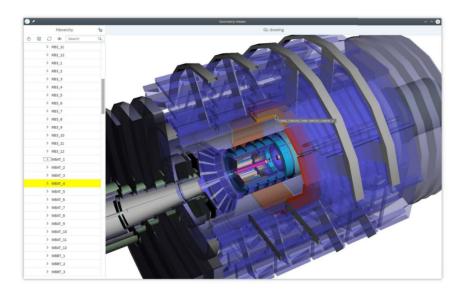
Gentoo Prefix and many more

Conda and Conda Forge

"Reliably install ROOT in under 5 minutes on any machine"

Chris Burr

- user centric software management
- increasing ease of use of many of our software packages


conda install python=3.8 root uproot boost-histogram

Martin Ritter

7

High Level Libraries (and more)

ROOT moving to Web technologies for Visualization

- reduce dependency on system libraries
- experimental but feedback welcome!

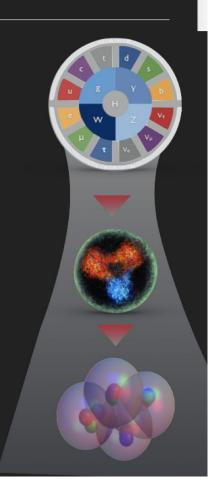
Standalone, high-performance, header-only histogramming library added to boost

good python bindings

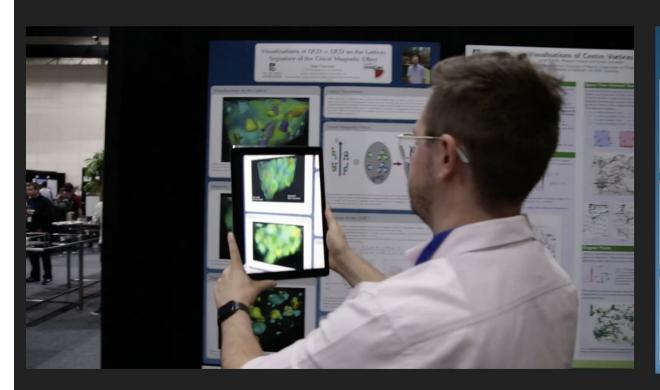
Martin Ritter

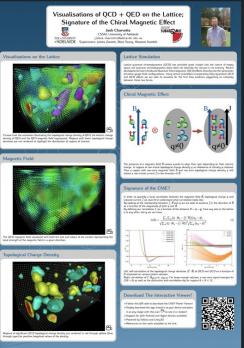
MACHINE LEARNING FOR DATA ANALYSIS

- Domain aware / physics informed / physics inspired ML algorithms
- BSM physics searches at the LHC
 - Unsupervised ML for anomaly detection
 - Neural networks, reinforcement learning for jet tagging
- Nuclear physics track fitting importing tools from HEP to NP
- ML-based Monte Carlo event generators
- High-dimensional ML inference beyond summary statistics


LATTICE QCD

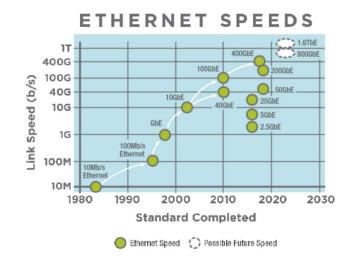
- Hadron and nuclear physics from the Standard Model
- Extreme-scale computations
 - ~10⁷ GPU hours
 - ▶ 100-1000 GPUs in parallel





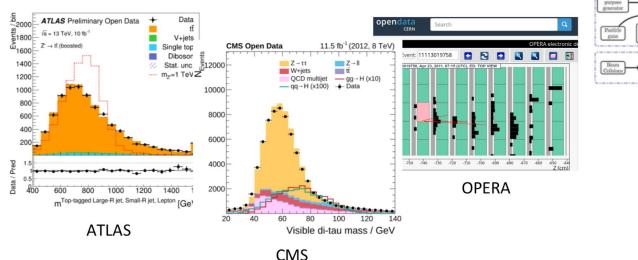
- >10% of open-science supercomputing in e.g., USA
- Era of precision calculations, fully-controlled uncertainties
 - Hadron structure relevant to LHC, EIC
 - New physics searches e.g., muon g-2
 - Moving towards nuclei for intensity frontier experiments

TRACK 6 POSTER HIGHLIGHT - JOSH CHARVETTO (UNI OF ADELAIDE)



Trends

- Jupyter
 - Increasing interest on the user side
 - > Interactive, fast learning curve
 - > Easy development and sharing
 - Jupyterhub enables access to diverse HTP and HPC resources
- Overview by Hepix TechWatch working group
 - Hyperscales (Google, Amazon) drive the market
 - x86 market: AMD is back
 - Magnetic disk: Market is shrinking
 - Tape: Risks essentially one company left for R&D
 - Ethernet evolving very fast
 - Pace of change exceeding IEEE standards process

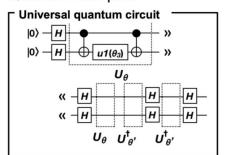

Containers

- Kubernetes, kubernetes, kubernetes, ...
 - Intensive deployment of containers based on Kubernetes engine
 - Job scheduling without batch system, simply relying on Kubernetes
 -> effective and promising, aspect to simplifying site operations, no CEs...
 - Registry solutions to deploy container images is one of concerns
- ScienceBox
 - Complete solution for scientific set of services from highly-scalable storage solutions (EOS) to user-friendly application, Jupyter notebook
 - All nicely packaged in containers
- Container technology facilitates use of various resources
 - HPC, HTC, Grid resources, etc.
- Moving CERN batch from Openstack VMs to Kubernetes
 - First benchmarks indicate 5% performance gain
- > All major experiments use containers in production

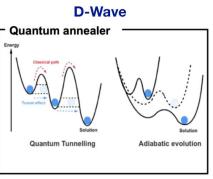
Open data is growing

CMS Experiment

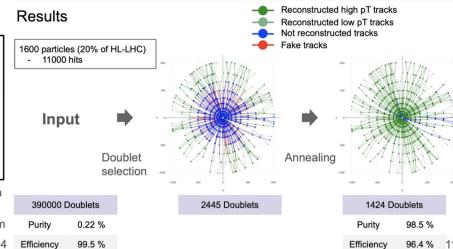
Experiments releasing more open data batches


- ATLAS: New 13 TeV 2016 data samples
- CMS: Machine Learning, RAW/AOD/AODSIM
- OPERA: tau-neutrino events

Growing use of open data for research


- Independent research papers on INSPIRE
- CMS released full provenance information as well as raw data samples

Quantum Tracking


Quantum Computer

- Arrange gates for each problem
- General-purpose computer

- Find the minimum energy state of a given Hamiltonian
- Suitable for an optimization problem
 Focus on quantum annealer

Not just a pipe dream!?

Tracking ML challenge

Leaderboard

	RESULTS									
	#	User	Entries	Date of Last Entry	score 🔺	accuracy_mean	accuracy_std ▲	computation time (sec) ▲	computation speed (sec/event) ▲	Duration
HEP	1	sgorbuno	9	03/12/19	1.1727 (1)	0.944 (2)	0.00 (14)	28.06 (1)	0.56 (1)	64.00 (1)
people	2	fastrack	53	03/12/19	1.1145 (2)	0.944 (1)	0.00 (15)	55.51 (16)	1.11 (16)	91.00 (6)
PH+CS	3	cloudkitchen	73	03/12/19	0.9007	0.928 (3)	0.00 (13)	364.00 (18)	7.28 (18)	407.00 (8)

Norfolk, Virginia, USA May 10-14, 2021

25TH INTERNATIONAL CONFERENCE

Computing in High Energy & Nuclear Physics

Amber Boehnlein - Chair David Abbott


Mark Ito **Brent Morris** **Graham Heyes** Rachel Harris

chep2O21.org

Elizabeth River Waterfront, Norfolk

- Scenic, walkable downtown with restaurants, lodging, shopping, museum and entertainment conveniently located near a major airport
- Light Rail Line to access to additional restaurants and museums

Social Activities

- Monday Night Reception will be held at the conference hotel
 - Feature Virginia Craft Beer and Virginia Wine: 4 excellent craft brewers and several vineyards in local area
- Banquet to be held at the Blue Moon Taphouse, Waterside
 - Music provided by Jae Sinnett, local Jazz legend
- Excursion/free afternoon options
 - Trips to the beach or seashore nature preserves
 - Norfolk Botanical Gardens
 - Geek tours: Port of Virginia and NATO Allied Command
 - Kayaking on the James
- Dining
 - Over 45 Restaurants near the Conference Hotel

