Start Counter Attenuation Corrections

Mahmoud Kamel

Jefferson Lab

$\mathrm{dE} / \mathrm{dx}(\mathrm{au})$ Plots for paddle 18, interval 3

Select fast pion tracks with $\mathrm{p}>500 \mathrm{MeV}$.
Each paddle is divided into 12 intervals along z starting from $z=18.5 \mathrm{~cm}$ in the start counter coordinates. Each interval is about 3.5 cm in length.

Fit the empirical function $f(x)=P_{3}\left(e^{-p 0(x-p 1)}\right)\left(1+\tanh \left(p_{2}(x-p 1)\right)\right)$ to the data
Calculate MPV of the $\mathrm{dE} / \mathrm{dx}$ for each interval:

$$
X_{\max }=p_{1}+\left(1 / p_{2}\right) \tanh ^{-1}\left(1-p_{0} / p_{2}\right)
$$

Determine the average z in each interval

Jefferson Lab 2

Plots for paddle 19 : dE/dx vs Z

Plot dE/dx vs Z .
Fit two exponential functions for the straight and $B N$ sections: $A_{s} \exp \left(B_{s} z\right)$ and $A_{n} \exp \left(b_{n} z\right)+C_{n}$

Calculate the correction factor: f_att (0)/f_att
Apply the correction and plot $\mathrm{dE} / \mathrm{dx}$ vs Z after correction
fCorr vs z

SC: dE/dx (au) vs P

Before Correction

Corrected dE/dx:

$$
\begin{aligned}
& (\mathrm{dE} / \mathrm{dx})_{\text {corr1 }}=\mathrm{dE} / \mathrm{dx} * \text { fCorr } \\
& \text { gain }=\left((\mathrm{dE} / \mathrm{dx})_{\text {corr1 }}\right)_{\text {ave }} /(\mathrm{dE} / \mathrm{dx})_{\text {corr1 }} \\
& (\mathrm{dE} / \mathrm{dx})_{\text {corr2 }}=\mathrm{dE} / \mathrm{dx} * \text { fCorr * gain }
\end{aligned}
$$

