Status and Future of Hall D/GlueX

E.Chudakov ${ }^{1}$

${ }^{1}$ JLab

Presented at Workshop
Nuclear Photoproduction with GlueX
JLab, 28-29 Apr 2016

Outline

(1) JLab at 12 GeV
(2) Physics motivation for Hall D: meson spectroscopy
(0) Experiment GlueX in Hall D

- Apparatus
- Performance of GlueX during commissioning
(4) Experimental program and future plans

CEBAF Upgrade to 12 GeV

- Accelerator: $2.2 \mathrm{GeV} /$ pass
- Halls A,B,C: $e^{-} 1-5$ passes $\leq 11 \mathrm{GeV}$
- Hall D: $e^{-} 5.5$ passes $12 \mathrm{GeV} \Rightarrow \gamma$-beam
- Beam separation to 4 Halls at 250 MHz

Upgrade Status

- 12 GeV started in Feb 2016
- Halls A,D: running; B,C: start in 2017

Hall D at Jefferson Lab

- Hall D - a new hall at Jefferson Lab
- Commissioning is complete
- Physics with high intensity polarized photon beams
- Experiment GlueX: search for exotic hybrid mesons
- Radiative widths of pseudoscalars, pion polarizability
- Other topics in preparation: rare decays, nuclear effects
- A new beamline and a new large acceptance detector
- Coherent Bremsstrahlung \Rightarrow linearly polarized photons
- Large solenoidal spectrometer \Rightarrow a uniform acceptance
- Fully pipelined electronics \Rightarrow very high trigger/DAQ rate

Meson spectroscopy

Naive quark model:

- Mesons are $\bar{q} q$, constituent quarks are $S=1 / 2$ fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: $J^{P C}$:

$$
P=(-1)^{L+1}, C=(-1)^{L+S}
$$

Glue and spectroscopy

Meson spectroscopy

Naive quark model:

- Mesons are $\bar{q} q$, constituent quarks are $S=1 / 2$ fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: $J^{P C}$:

$$
P=(-1)^{L+1}, C=(-1)^{L+S}
$$

J	--	++	-+	+-		Glue and spectroscopy
0		0^{++}	0^{-+}			Gluonic excitations \Rightarrow hybrid mesons
1	1^{--}	1^{++}		1^{+-}	Predicted by models, Lattice QCD	
2	2^{--}	2^{++}	2^{-+}			"Constituent gluon":
3	3^{--}	3^{++}		3^{+-}		LQCD: $1+$, mass of $1-1.5 \mathrm{GeV}$
$q \bar{q} \mathrm{QN}$	"exotic"QN					

of a new degree of freedom
no mixing with the regular $\bar{q} q$ states

Meson spectroscopy

Naive quark model:

- Mesons are $\bar{q} q$, constituent quarks are $S=1 / 2$ fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: $J^{P C}$:

$$
P=(-1)^{L+1}, C=(-1)^{L+S}
$$

J	--	++	-+	+-
0	$\mathbf{0}^{--}$	0^{++}	0^{-+}	$\mathbf{0}^{+-}$
1	1^{--}	1^{++}	$\mathbf{1}^{-+}$	1^{+-}
2	2^{--}	2^{++}	2^{-+}	$\mathbf{2}^{+-}$
3	3^{--}	3^{++}	3^{-+}	3^{+-}
Q				

Meson spectroscopy

Naive quark model:

- Mesons are $\bar{q} q$, constituent quarks are $S=1 / 2$ fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: $J^{P C}$:

$$
P=(-1)^{L+1}, C=(-1)^{L+S}
$$

Glue and spectroscopy

Gluonic excitations \Rightarrow hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":

LQCD: 1^{+-}, mass of 1-1.5 GeV

- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular $\bar{q} q$ states

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 \mathrm{MeV}$
Orange frames - lightest hybrids

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 \mathrm{MeV}$
Orange frames - lightest hybrids

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 \mathrm{MeV}$
Orange frames - lightest hybrids

Hybrids: expected features and ways to detect

$$
\begin{gathered}
\text { Masses } \\
\text { - LQCD: } 1^{-+} \sim 2.0-2.4 \mathrm{GeV} / \mathrm{c}^{2} \\
0^{+-} \sim 2.3-2.5 \mathrm{GeV} / \mathrm{c}^{2} \\
2^{+-} \sim 2.4-2.6 \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

- Models: $0.1-0.5 \mathrm{GeV} / \mathrm{c}^{2}$

Decays

- Final states: multiple $\pi^{ \pm}$and γ

No calculations for the decay widths or cross sections so far.
How to detect the hybrids?

- Detect the final states
- Identify the QN using the Partial Wave Analysis (PWA)

GlueX Experiment: Design Goals and Features

- General requirements:
- Hermeticity and uniform acceptance for charged particles and photons
- Good enough resolution to identify exclusive reactions
- High statistics
- Specific feature: tagged photon beam
- Linear polarization helps the QN identification
- Beam γ and π^{-}have different couplings to the hybrid states \Rightarrow complementary to the π^{-}-beam experiments
- Few photoproduction data exist so far
- Considerable theoretical support for the PWA

The GlueX Collaboration

Arizona State, Athens, Carnegie Mellon, Catholic University, Univ. of Connecticut, Florida International, Florida State, George Washington, Glasgow, GSI, Indiana University, ITEP, Jefferson Lab, U. Mass. Amherst, MIT, MEPhi, Norfolk State, North Carolina A\&T, Univ. North Carolina Wilmington, Northwestern, Santa Maria, University of Regina, and Yerevan Physics Institute.

Over 100 collaborators from 23 institutions. Others are planning to join and more are welcome.

Hall D Complex

Photo July 2011 Ready Dec 2011

Beam/detector Ready Oct 2014

Hall D/GlueX Beamline

- $12 \mathrm{GeV} e^{-}$beam $0.05-2.2 \mu \mathrm{~A}$
- $20 \mu \mathrm{~m}$ diamond: coherent $<25 \mu \mathrm{rad}$
- Collimation $r<1.8 \mathrm{~mm}$ at $\sim 80 \mathrm{~m}$
- Coherent peak $8.4-9.0 \mathrm{GeV} \quad \mathcal{P} \sim 40 \%$ $2.2 \mu \mathrm{~A} \Rightarrow 100 \mathrm{MHz} \gamma$
- Energy/polarization measured:
- Tagger spectrometer $\sigma_{E} / E \sim 0.1 \%$
- Pair spectrometer: spectrum $\Rightarrow \sigma_{\mathcal{P}} / \mathcal{P} \sim 5 \%$

Photon Beam dump

Hall D/GlueX Spectrometer and DAQ

Give $X \mathrm{~m}_{\mathrm{m}}==\square$

$$
h^{ \pm}: \quad \sigma_{p} / p \sim 1-3 \%
$$

- CDC, FDC

$$
\gamma: \sigma_{E} / E \sim 6 \% / \sqrt{E} \oplus 2 \%
$$

- BCAL, FCAL

$$
\text { Acceptance } 1^{\circ}<\theta \underset{\text { photon beam }}{120^{\circ}}
$$

- TOF, ST
Plans to add
- 2017 L3
- 2018 Cherenkov

Photoproduction $\gamma p 15 \mathrm{kHz}$ for a 100 MHz beam
Beam $10 \mathrm{MHz} / \mathrm{GeV}$: inclusive trigger $20 \mathrm{kHz} \Rightarrow \mathrm{DAQ} \Rightarrow$ tape Beam $100 \mathrm{MHz} / \mathrm{GeV}$: inclusive trigger $200 \mathrm{kHz} \Rightarrow \mathrm{DAQ} \Rightarrow \mathrm{L} 3$ farm \Rightarrow tape

Hall D

Spectrometer, Detectors and Dimensions

Spectrometer, Detectors and Dimensions

Central Drift Chamber

Spectrometer, Detectors and Dimensions

Forward Drift Chambers

Spectrometer, Detectors and Dimensions

Barrelct Calorimeter

Spectrometer, Detectors and Dimensions

GlueX Detector

Spectrometer, Detectors and Dimensions

Hall D/GlueX Commissioning Status

Runs with beam:

- Fall 2014 10.0 GeV beam: beam commissioning and detector checkout
- Unpolarized beam and nuclear target
- Spring 2015 5.5 GeV beam: 1 week of beam - commissioning
- Commissioning of the linearly polarized beam
- Commissioning of the Liquid Hydrogen target
- Spring 201612 GeV beam (Feb 10 - Apr 25)
- Engineering run: commissioning is complete
- Data for early physics results
- ~ 24 G events recorded

Hall D/GlueX Beam: Coherent Bremsstrahlung

- 20-50 $\mu \mathrm{m}$ thick diamond radiators
- Precision alignment using a goniometer

Polarization measurements

- Derived from the spectrum
- Triple polarimeter $\gamma e^{-} \rightarrow e^{+} e^{-} e^{-}$
- Processes like $\gamma p \rightarrow \rho^{\circ} p$

Physics With Linearly Polarized Beam

$$
\frac{d \sigma}{d \psi} \propto(1+P \cos 2 \psi)
$$

from 2016 data

- 38k $\gamma p \rightarrow \rho^{\circ} p$ in $8.4<E_{\gamma}<9.0 \mathrm{GeV}$
- 2 crystal orientations at 90°
- $\frac{N_{0}-N_{90}}{N_{0}+N_{90}}=P \sum \cos 2 \psi$

$$
P \Sigma=0.341 \pm \mathbf{0 . 0 0 7 \%}
$$

Positively Charged Particles

Positively Charged Particles

Event Reconstruction and Signals Observed

2015 data

from 2016 data

Event Reconstruction and Signals Observed

Forward Kaon Identification

Present PID: TOF, $d E / d x$, Kinematics

Upgrade

- 4 of the BaBar DIRC bar boxes
- New readout system
- Allows to study:
- Strangeonium and hybrids
- Hyperons
- Installation planned for 2018

Hall D Preliminary Running Schedule

- 2016-2018 GlueX at "low" intensity of 10 MHz in the peak
- 2018 PRIMEX (Primakoff) experiment
- 2018 DIRC installation
- 2019-2022 GlueX at "high" intensity $5 \times 10 \mathrm{MHz}$ in the peak focus on hidden strangeness and hyperon resonances

APPENDIX

Hall D Physics Program

Proposal/ experiment	Status	Title	Beam days	$\begin{array}{r} \text { PAC } \\ \# \end{array}$
E12-06-102	A	Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons	120	30
E12-10-011	A-	A Precision Measurement of the η Radiative Decay Width via the Primakoff Effect	79	35
E12-13-003	A	An initial study of hadron decays to strange final states with GlueX in Hall D	200	40
E12-13-008	A-	Measuring the Charged Pion Polarizability in the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$Reaction	25	40
E12-12-002	A	A study of meson and baryon decays to strange final states with GlueX in Hall D	220	42
C12-14-004	C2	Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory Experiment (JEF) partly concurrent with GlueX $(\eta \rightarrow 3 \pi)$	(130)	42
$\begin{aligned} & \text { LOI12-15-001 } \\ & \text { LOI12-15-006 } \end{aligned}$		Physics with secondary K_{L}° beam ω-production on nuclei		43 43

