Status and Future of Hall D/GlueX

E.Chudakov1

¹JLab

Presented at Workshop Nuclear Photoproduction with GlueX JLab, 28-29 Apr 2016

Outline

- JLab at 12 GeV
- Physics motivation for Hall D: meson spectroscopy
- Separate Separate
 - Apparatus
 - Performance of GlueX during commissioning
- Experimental program and future plans

CEBAF Upgrade to 12 GeV

- Accelerator: 2.2 GeV/pass
- Halls A,B,C: e⁻ 1-5 passes ≤11 GeV
- Hall D: e^- 5.5 passes 12 GeV $\Rightarrow \gamma$ -beam
- Beam separation to 4 Halls at 250 MHz

Upgrade Status

- 12 GeV started in Feb 2016
- Halls A,D: running; B,C: start in 2017

Status of Hall D

Hall D at Jefferson Lab

- Hall D a new hall at Jefferson Lab
 - Commissioning is complete
- Physics with high intensity polarized photon beams
 - Experiment GlueX: search for exotic hybrid mesons
 - Radiative widths of pseudoscalars, pion polarizability
 - Other topics in preparation: rare decays, nuclear effects
- A new beamline and a new large acceptance detector
 - Coherent Bremsstrahlung ⇒ linearly polarized photons
 - Large solenoidal spectrometer ⇒ a uniform acceptance
 - Fully pipelined electronics ⇒ very high trigger/DAQ rate

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}, C = (-1)^{L+S}$

- Predicted by models, Lattice QCD
- Exotic QN: an excellent signature

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}$, $C = (-1)^{L+S}$

Glue and spectroscopy

Gluonic excitations ⇒ hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":
 LQCD: 1⁺⁻, mass of 1-1.5 GeV
- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular qq state

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}$, $C = (-1)^{L+S}$

Glue and spectroscopy

Gluonic excitations \Rightarrow hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":
 LQCD: 1⁺⁻, mass of 1-1.5 GeV
- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular qq state

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}$, $C = (-1)^{L+S}$

Glue and spectroscopy

1^{--} 1^{++} 1^{+-} Gluonic excitations \Rightarrow hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":
 LQCD: 1⁺⁻, mass of 1-1.5 GeV
- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular qq states

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 MeV$ Orange frames - lightest hybrids

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013)

Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_\pi \sim 400 MeV$ Orange frames - lightest hybrids

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 MeV$ Orange frames - lightest hybrids

Hybrids: expected features and ways to detect

Masses

• LQCD: $1^{-+} \sim 2.0 - 2.4 \text{ GeV/c}^2$ $0^{+-} \sim 2.3 - 2.5 \text{ GeV/c}^2$ $2^{+-} \sim 2.4 - 2.6 \text{ GeV/c}^2$

Full Widths

Models: 0.1 − 0.5 GeV/c²

Decays

ullet Final states: multiple π^\pm and γ

No calculations for the decay widths or cross sections so far.

How to detect the hybrids?

- Detect the final states
- Identify the QN using the Partial Wave Analysis (PWA)

GlueX Experiment: Design Goals and Features

- General requirements:
 - Hermeticity and uniform acceptance for charged particles and photons
 - Good enough resolution to identify exclusive reactions
 - High statistics
- Specific feature: tagged photon beam
 - Linear polarization helps the QN identification
 - Beam γ and π^- have different couplings to the hybrid states \Rightarrow complementary to the π^- -beam experiments
 - Few photoproduction data exist so far
- Considerable theoretical support for the PWA

The GlueX Collaboration

Arizona State, Athens, Carnegie Mellon, Catholic University, Univ. of Connecticut, Florida International, Florida State, George Washington, Glasgow, GSI, Indiana University, ITEP, Jefferson Lab, U. Mass. Amherst, MIT, MEPhi, Norfolk State, North Carolina A&T, Univ. North Carolina Wilmington, Northwestern, Santa Maria, University of Regina, and Yerevan Physics Institute.

Over 100 collaborators from 23 institutions. Others are planning to join and more are welcome.

Hall D Complex

Civil Photo July 2011 Ready Dec 2011

Beam/detector Ready Oct 2014

Hall D/GlueX Beamline

- 12 GeV e^- beam $0.05 2.2 \,\mu\text{A}$
- 20 μ m diamond: coherent <25 μ rad
- Collimation r <1.8 mm at ~ 80 m
- Coherent peak 8.4 9.0 GeV $\mathcal{P} \sim$ 40% 2.2 μ A \Rightarrow 100 MHz γ
- Energy/polarization measured:
 - Tagger spectrometer $\sigma_E/E \sim 0.1\%$
 - Pair spectrometer: spectrum $\Rightarrow \sigma_{\mathcal{P}}/\mathcal{P} \sim 5\%$

Hall D/GlueX Spectrometer and DAQ

Photoproduction γp 15 kHz for a 100 MHz beam Beam 10 MHz/GeV: inclusive trigger 20 kHz \Rightarrow DAQ \Rightarrow tape Beam 100 MHz/GeV: inclusive trigger 200 kHz \Rightarrow DAQ \Rightarrow L3 farm \Rightarrow tape

Hall D

E.Chudakov

NPG2016, Apr 2016

Status of Hall D

Jefferson Lab

Hall D/GlueX Commissioning Status

Runs with beam:

- Fall 2014 10.0 GeV beam: beam commissioning and detector checkout
 - Unpolarized beam and nuclear target
- Spring 2015 5.5 GeV beam: 1 week of beam commissioning
 - Commissioning of the linearly polarized beam
 - Commissioning of the Liquid Hydrogen target
- Spring 2016 12 GeV beam (Feb 10 Apr 25)
 - Engineering run: commissioning is complete
 - Data for early physics results
 - ~ 24 G events recorded

Hall D/GlueX Beam: Coherent Bremsstrahlung

- 20-50 μm thick diamond radiators
- Precision alignment using a goniometer

Polarization measurements

- Derived from the spectrum
- Triple polarimeter
 γe⁻ → e⁺e⁻e⁻
- Processes like $\gamma p \rightarrow \rho^{\circ} p$

Run 10492: 50 µm diamond

E.Chudakov NPG2016, Apr 2016

Status of Hall D

16 / 32

Jefferson Lab

Physics With Linearly Polarized Beam

from 2016 data

- 38k $\gamma p \rightarrow \rho^{\circ} p$ in 8.4 $< E_{\gamma} <$ 9.0 GeV
- 2 crystal orientations at 90°

•
$$\frac{N_0 - N_{90}}{N_0 + N_{90}} = P\Sigma \cos 2\psi$$

$$\textit{P}\Sigma \text{= 0.341} \pm 0.007\%$$

PID

Jefferson Lab

Event Reconstruction and Signals Observed

Event Reconstruction and Signals Observed

Forward Kaon Identification

Present PID: TOF, dE/dx, Kinematics

Upgrade

- 4 of the BaBar DIRC bar boxes
- New readout system
- Allows to study:
 - Strangeonium and hybrids
 - Hyperons
- Installation planned for 2018

Hall D Preliminary Running Schedule

- 2016-2018 GlueX at "low" intensity of 10 MHz in the peak
- 2018 PRIMEX (Primakoff) experiment
- 2018 DIRC installation
- 2019-2022 GlueX at "high" intensity 5×10 MHz in the peak focus on hidden strangeness and hyperon resonances

APPENDIX

Hall D Physics Program

-		_	
Sta-	Title		PAC
tus		days	#
Α	Mapping the Spectrum of Light Quark	120	30
	Mesons and Gluonic Excitations with Lin-		
	early Polarized Photons		
A-	A Precision Measurement of the η Radia-	79	35
Α	1	200	40
A-		25	40
Α	1 2	220	42
	1		
C2		(130)	42
		, ,	
	· ·		
	partly concurrent with GlueX $(\eta o 3\pi)$		
	Physics with secondary K_L° beam		43
	ω -production on nuclei		43
	A - A - A - A	tus A Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons A Precision Measurement of the η Radiative Decay Width via the Primakoff Effect A An initial study of hadron decays to strange final states with GlueX in Hall D A Measuring the Charged Pion Polarizability in the $\gamma\gamma \to \pi^+\pi^-$ Reaction A Study of meson and baryon decays to strange final states with GlueX in Hall D C2 Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory Experiment (JEF) partly concurrent with GlueX ($\eta \to 3\pi$) Physics with secondary $K_{\mathcal{L}}^{\circ}$ beam	tus A Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons A Precision Measurement of the η Radiative Decay Width via the Primakoff Effect A An initial study of hadron decays to strange final states with GlueX in Hall D A Measuring the Charged Pion Polarizability in the $\gamma\gamma \to \pi^+\pi^-$ Reaction A Study of meson and baryon decays to strange final states with GlueX in Hall D C2 Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory Experiment (JEF) partly concurrent with GlueX ($\eta \to 3\pi$) Physics with secondary $K_{\rm L}^{\rm o}$ beam