

GlueX Capabilities for Nuclear Photoproduction

A. Somov, Jefferson Lab

Nuclear Photoproduction with GlueX April 28 – 29, 2016

Physics Topics with Nuclear Targets Considered for GlueX

- Photoproduction of vector mesons off nuclei
- > Study in-medium modification effects
- Color transparency
- Primakoff production

.

> Heavy meson photoproduction (open charm, J/ψ)

Photon Flux and Run Conditions

Main factors limiting luminosity:

- rate of coincidential hits in tagger (for small beam energies)
- background (neutrons) in the experimental Hall-D

- ➢ GlueX beam requirements for runs with the LH2 target
 - $5 \cdot 10^7$ y/sec on target in the energy range 8.4 GeV < E < 9.1 GeV
 - coincidental rate in the tagger:15 % in a 2 ns time window (500 MH RF)
 - collimator diameter: 3.4 mm (transmission factor $\sim 1/6$ for $E_{min} < E < 12 \text{ GeV}$)
 - LH2 target thickness ~3.4 % R.L.

Photon Flux and Run Conditions

Nuclear targets (no beam polarization)

- Some physics topics require measurements in a larger beam energy range
- Increase size of the collimator to $\geq 5 \text{ mm}$ (transmission factor ~1/3)
- Increase target thickness to 7 10 % R.L.
- Reduce electron beam current by a factor of 9
- Flux of collimated and tagged photons: 2.1 x 10⁷ γ /sec (6.5 GeV < E_{γ} < 12 GeV)
- Coincidental rate in tagger ~ 17 %

Reconstruction of $\omega \rightarrow e^+ e^-$

Reconstruction of $\omega \rightarrow \pi \gamma$

Reconstruction of $\omega \rightarrow \pi \gamma$

- Good detection efficiency of $\omega \rightarrow \pi \gamma$ decays at 'large' momentum
- Difficult to do line-shape analyses; relatively poor mass resolution $\sigma(m)/m > 3\%$
- Good capability to study nuclear transparency (see Volker M. talk)

Photoproduction of Vector Mesons off Nuclei

- Study interactions of transversely and longitudinally polarized vector mesons with nucleons (Sergey G. talk)
- Measure differential cross section of the vector meson photoproduction in the energy range between 5 GeV and 12 GeV and the momentum transfer range $|t| < 0.5 \text{ GeV}^2$

Nuclear Transparency

E. Chudakov, S, Gevargyan, A, Somov Phys. Rev. C 93, 015203 (2016)

Input values: $\sigma_T = 26 \text{ mb}$ $\rho_{00} = 0.2$ (mesured by SLAC in photoproduction on nucleon)

9

A_{EFF} and ρ_{00} versus σ_L

Yield of *w* Mesons

- \blacktriangleright Thickness of nuclei targets $-7 \% X_0$
- Production rate of omega mesons in incoherent process on a Al target:

 $R = 1.8 \ \omega/sec$ 6.5 GeV $< E_{\gamma} < 7.5 \ GeV$ 0.07 reconstructed ω/sec

Target	σ _{INCOH} (μb)		Reconstructed $\omega \rightarrow \pi^0 \gamma$ per day	
	6 GeV	9 GeV	6.5 – 7.5 GeV	8 - 9 GeV
Al	31	19	5672	6336

Meson Production with Large Momentum Transfer

Meson Photoproduction with Large Momentum Transfer

- Sensitive to color transparency effects
- Study production A (γ , $\pi^- p$) and A (γ , $\pi^+ n$) |t| > 3 GeV², cos (θ)_{C.M.} > -0.75
- Realatively small cross sections but still may be possible to study with GlueX
- Consider production of other mesons (ρ, ...) at high-momentum transfer

SLAC

Kinematics: $\gamma n \rightarrow \pi^- p$

Reconstruction with GlueX

Process signal events through the GlueX Geant simulation
 Reconstruction efficiency ~ 75 %

Trigger: select events with back-to-back hits

Expected yield: 100 p π^- reconstructed events per day

	Energy range (GeV)				
	6.5 - 7.5	7.5 – 8.5	8.5 - 9.5	9.5 - 10.5	10.5 - 12
$\sigma_{\gamma Au} (nb)$	10.7.1	59.2	36.0	23.5	14.5
N_{γ} (10 ⁶)	2.2	3.4	5.6	4.5	6.0
$N_{p\pi}$ per day	(29.7)	25.8	23.1	13.7	11.2

Reconstruction with GlueX

> Started studying background in γ n interactions using Pythia

- expected background is small (work in progress): binary reaction, two back-to-back tracks

 \blacktriangleright Study background using γ A event generator

 γ p → π⁺ n is more difficult to measure (see Or and Werner talks): need to trigger on high-p_T pion can use time-of-flight wall for the trigger

Summary

- The GlueX detector design was optimized for search and mapping the spectrum of light exotic mesons using the hight-intensity linearly polarized photon beam
 - The detector is designed to have excellent acceptance for both charged particles and photons in the final state
 - Nuclear production can be studied in the wide photon beam energy range
 - We have strated developing physics program for the GlueX to study photoproduction on nuclear targets. Some topics we have considered so far:

Photoproduction of vector mesons off nuclei Study in-medium modification effects Color transparency

We want to get interested people involved and build a strong physics motivation for the experiment

12 GeV CEBAF Energy Upgrade

- Upgrade CEBAF energy from 6 GeV to 12 GeV.
- New experimental Hall D
 - photon beam (linear polarization)

Hall D Physics Program

Experiment Proposal	Name	Days	Status	Cond.	Target
E12-06-102	Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons	120	A		LH ₂
E12-12-002 E12-13-003	A study of meson and baryon decays to strange final states with GlueX in HallD	220	А	L3 trigger PID	LH ₂
E12-10-011	A Precision Measurement of the Radia- tive Decay Width via the Primakoff Effect	79	A-		LHe ₄
E12-13-003	Measuring the Charged Pion Polari- zability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ Reaction	25	A-		Sn
C12-14-004	Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory Experiment (JEF)	(130)	C	Upgrade forward calorim.	LH ₂
LOI12-15-001	Physics with secondary K_L beam				LH ₂ , A
LOI12-15-006	Production ω mesons off nuclei				A

Photon Beam Requirements

Experiment	Photon Energy Range (GeV)	Polarization	Photon Flux γ/ sec
GlueX Search for gluonic excitations in the spectra of light mesons	8.4 – 9.0	44 %	5 · 10 ⁷
PrimEx A precision measurement of the $\eta \rightarrow \gamma \gamma$ decay width via the Primakoff effect	10.5 – 11.7	None	7.6 · 10 ⁶
Measuring the charged pion polarizability	5.5 - 6.0	76 %	107

Polarized Photon Beam

- Beam photons are produced by 12 GeV electrons (I < 2.2 μ A) on a thick diamond crystal (20 μ m)) • Photon energy: detect bremsstrahlung electrons $\Delta E / E < 0.005$
- Pass beam photons through the collimator
 - increase the fraction of linearly polarized photons
 - beam intensity: $10^8 \gamma$ /sec for 8.4 < E_{γ} < 9.1 GeV

GlueX Detector

Tracking:

- Central Drift Chamber
- Forward Drift Chamber

Calorimetry:

- Barrel Calorimeter
- Forward Calorimeter

PID:

- Time of Flight wall
- Start Counter
- Barrel Calorimeter

Tracking

Forward Drift Chamber

- Angular coverage $1^{\circ} < \theta < 30^{\circ}$
- 4 packages, 6 cathode/wire/cathode chambers in each package
- ~12000 channels
- σ_{xy} ~ 200 μm

Tracking performance: $\sigma_p / p \sim 1 - 3 \%$

Central Drift Chamber

- Angular coverage $6^{\circ} < \theta < 155^{\circ}$
- 12 axial layers, 16 stereo layers
 3522 straw tubes (1.6 cm diameter)
- De/dx for p, π identification
- $\sigma_{\phi} \sim 150 \ \mu m$, $\sigma_z \sim 2 \ mm$

Barrel Calorimeter:

- Angular coverage 11° < θ < 120 °
- 191 layers Pb:ScFib:Glue (37:49:14%)
- Double side readout (SiPM)
- $\sigma_{\rm E}$ / E = 6 % / $\sqrt{\rm E}$ \oplus 1.6 %
- σ_z = 5 mm / √E
- σ_t = 74 ps / $\sqrt{E \oplus 33}$ ps

Calorimetry

Forward Calorimeter:

- Angular coverage $2^\circ < \theta < 11^\circ$
- 2800 Pb-glass blocks: 4cm x 4 cm x 45 cm
- $\sigma_{\rm E}$ / E $\,$ = 6 % / $\!\!\!\!\!\sqrt{\rm E} \oplus$ 2.0 %
- σ_{xy} = 6.4 mm / \sqrt{E}

GlueX Commissioning

Experiments using Primakoff Production

Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ via Primakoff Effect

 $\Gamma(\eta \rightarrow \gamma \gamma)$ Hall-D projection

Physics:

- Light quark mass ratio
- η η^\prime mixing angle

 $\Gamma(\eta \rightarrow 3\pi) \propto |A|^2 \propto Q^4$

- > 11.0 11.7 GeV incoherent tagged photons
- > 30 cm LH₂ and LHe₄ targets (~3.6% r.l.)
- > Forward Calorimeter (FCAL) for $\eta \rightarrow \gamma \gamma$

Nuclear Targets in PrimEX I Experimet

- Experiment performed in Hall-B using a 6 GeV photon beam
- > Measure $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ using nuclear targets: ¹² C and ²⁰⁸ Pb

Charged Pion Polarizability

- Use Primakoff production $\gamma A \rightarrow \pi^+ \pi^- A$ to extract pion polarizability *test* χ_{PT} *predictions*
- Photon energy of interest 5.5 6 GeV, polarization 76 %
- Major background from rho decays and $\mu^+\mu^-$
- Requires new muon detector

 $\gamma + \gamma \rightarrow \pi^+ + \pi^-$

Quark Distributions in Polarized Mesons

Different distributions of quarks in the transversely and longitudinally polarized mesons

Photoproduction of ω-mesons off Nuclei

Coherent photoproduction $\gamma + A \rightarrow \omega + A$

- obtain the total cross section of transversely polarized ω meson with nucleons $\sigma_{T}\left(\omega\;N\right)$
- \bullet measure the ω photon coupling constant

Incoherent photoproduction $\gamma + A \rightarrow \omega + A'$

- extract the total cross section of longitudinally polarized ω meson with nucleons $\sigma_L(\omega N)$ which has not yet been measured
- measure nuclear transparency and the spin density matrix elements for different nuclei

Coherent Production of *\omega***-mesons**

- Exchange of particle with isotopic spin one (pion exchange) has different signs in photoproduction on proton and neutron
 - the contribution of pion exchane cancels out when amplitudes are summed
- S channel helicity conservation in production at small angles
 - transversely polarized $\boldsymbol{\omega}$ mesons

$$\frac{d\sigma_A(q)}{dt} = |F_A(q_\perp, q_L \sigma_T)| \frac{d\sigma_N}{dt} \Big|_{t=0}$$

Obtain ω - photon coupling constant

$$\frac{d\sigma_N}{dt}\bigg|_{t=0} = \frac{4\pi}{\gamma_{\omega}^2} \frac{\alpha}{64\pi} \sigma_{\omega}^2 (1+\alpha_{\omega}^2)$$

Measure coupling constant in photoproduction on nucleons using linearly polarized photons (distinguish contributions from the natural and unnatural parity exchange)

- measure photoproduction cross section on both nuclei and nucleons
- help to sort out some contradictions in the measurements of the $\boldsymbol{\omega}$ photon coupling constant

Incoherent production of ω mesons

Nuclear transparency

Spin

$$\frac{d\sigma_A(q)}{dt} = \frac{d\sigma_0(q)}{dt} \cdot (\rho_{00}N(\sigma_L) + (1 - \rho_{00})N(\sigma_T))$$

$$N(\sigma) = \int \frac{1 - \exp(-\sigma \int \rho(b, z) dz)}{\sigma} d^2 b$$

$$A_{EFF} = \frac{d\sigma_A(q)}{dt} / \frac{d\sigma_0(q)}{dt}$$
density matrix elements
$$\rho_{00}^A = \frac{N(\sigma_L)}{\rho_{00}N(\sigma_L) + (1 - \rho_{00})N(\sigma_T)} \rho_{00}$$

Extend the model by taking into account interference of production amplitudes

- required to describe electroproduction of vector mesons

- energy dependent transparency:
$$N(\sigma_T) \rightarrow W(\mathbf{q}_L, \sigma_T)$$
,
where $q_L = m^2 / 2 E$

Spin Density Matrix Elements

34

Reconstruction of ω-mesons with GlueX

 $\succ \omega$ - mesons reconstructed with GlueX

Detector calibration is in progress

Medium Modifications of Mesons

□ Study modifications of meson properties by nuclear matter:

Spectroscopy of hadron line shapes

Attenuation measurements

Use vector mesons to study the mass distribution and medium absorption ($c\tau = 1.3$ fm, 23 fm, and 46 fm for ρ, ω, and φ)

In-medium modification measurements have been performed by several experiments

- Experimental measurements are not completely understood (more measurements are required)

Experimental Results on In-medium Modifications

S.Leupold, V. Metag, U. Mosel Int. J. Mod. Phys. E 19 (2010)

Experimet	Beam GeV	P range GeV/c	ρ	ω	¢
Spring 8	γ A 1.5 – 2.4	p > 1 K+K ⁻ final state			ΔΓ ~ 70 MeV p = 1.8 GeV/c
CBELSA/ TAPS	γ A 0.9 – 2.2	p > 0 $\pi^0 \gamma$ final state		ΔΓ ~ 130 MeV p = 1.1 GeV/c	
CLAS E01-112	γ A 0.6 – 3.8	p > 0.8 e ⁺ e ⁻ final state	$\Delta m \sim 0$ $\Delta \Gamma \sim 70 \text{ MeV}$ p = 1.1 GeV/c		
KEK-E325	рА 12	p > 0.6 e^+e^- final state	$\Delta m / m = -9 \%$ $\Delta \Gamma \sim 0$	$\frac{\Delta m}{m} = -9 \%$ $\Delta \Gamma \sim 0$	$\Delta m / m = -3.4 \%$ $\Delta \Gamma / \Gamma = 3.6$
GlueX	γ A 6 – 12		ππ (e+e-)	π ⁰ γ, π ⁺ π ⁻ π ⁰ , (e ⁺ e ⁻)	K+K− (e+e−)

Nuclear Transparency Measured by CLAS E01-112

PRL 105, 112301 (2010)

GlueX Perspectives to Measure In-medium Effects

- $\hfill\square$ Study medium modifications of light mesons $\rho,\,\omega,$ and $\,\phi$
- Reconstruct mesons in different final states
 - study contribution from final state interactions
 - small final state distortion in the dilepton final state
 - small branching fractions of 10⁻⁴ 10⁻⁵
 - ρ ω interference
 - have to study GlueX reconstruction capabilities of dileptons
- Study in-medium effects for different beam energies and meson momenta