Exclusive J/ψ production and gluonic structure

C. Weiss (JLab), Nuclear Photoproduction with GlueX, JLab, 28–29 Apr 2016

• Quarkonium size and structure

Parametric: Dynamical scales

Numerical: Potential models, Lattice QCD

• J/ψ photo/electroproduction at $W\gg W_{\rm th}$ fnal, compass, hera, eic

Space-time picture in rest frame GPD as color dipole moment of nucleon "Gluon imaging" of nucleon

• J/ψ photo/electroproduction near threshold Cornell, SLAC, JLab 12 GeV

Kinematics of large t_{\min}, x

Gluonic form factor of nucleon

Nuclear targets

Connections: Small–size configurations, high– Q^2 meson production, high–t form factors, color transparency . . .

Heavy quarkonium: Scales and size

• Parametric: Non-relativistic system Cf. Positronium in QED, $v \sim \alpha_{em}$

Effective field theory approach: Non-relativistic QCD, mv^n expansion Lepage et al 92; Manohar 97; Brambilla 2000; Kniehl et al. 2002

• Numerical: Potential models Eichten et al. 75; Quigg, Rosner 77

Typical $c\bar{c}$ distances r \sim 0.2–0.3 fm \ll 1 fm

Transverse size in light–cone wave function $\langle r_T^2 \rangle = 2/3 \, \langle r^2 \rangle$

High-momentum components with $k\gtrsim m$ account for $\sim 30\%$ of $R_{00}(r=0)$ $_{\rightarrow \ \rm Decays}$

 J/ψ "moderately small," relativistic

Heavy quarkonium: Size from lattice QCD

• Charmonium form factors

Separate ground \leftrightarrow excited states using matrix of correlation functions Dudek et al. 06 \rightarrow Light quarks, hybrid mesons

Artificial J/ψ "charge form factor" from current with $c\neq \bar{c}$ coupling

 J/ψ charge radius $\langle r^2\rangle^{1/2}\approx 0.26~{\rm fm}$

Also η_c , radiative transitions

Heavy quarkonium: Probe of color field

Fields change with incident energy, size of $Q\bar{Q}$ configurations

Multipole expansion: Dipole $+ \ldots$

• Exclusive photo/electroproduction

Target recoils: Gluonic form factor

 $Q^2~{\rm tests}/{\rm changes}$ "mix" of $Q\bar{Q}~{\rm sizes}$

Theoretical challenges! Separate structures of target and probe (factorization), model gluonic structure of target

• Quarkonium-hadron rescattering

Theoretically simpler, but difficult to realize at low energies!

Photoproduction: Kinematics

• Exclusive production $\gamma N \to J/\psi + N$

Invariant momentum transfer grows near threshold $|t_{
m min,th}|=2.2\,{
m GeV}^2$

- Light-cone variables

 - Δ_T Transverse momentum transfer
 - $t \; = \; (\zeta^2 m_N^2 + \Delta_T^2) / (1-\zeta)$
- Two regimes
 - $W \approx W_{
 m th}$ $t_{
 m min} =$ 1–2 ${
 m GeV}^2$, ζ large cf. nucleon elastic form factors Cornell, SLAC, JLab 12 GeV
 - $W \gg W_{
 m th}$ $t_{
 m min}$ negligible, $\zeta \ll 1$ cf. diffractive processes FNAL, COMPASS, HERA, EIC

High W: **QCD** factorization and dipole picture 6

$$\langle N'|F_{+i}(0)F_{+i}(z^-)|N
angle$$

 $z^2=0$ light–like distance

• QCD factorization theorem Collins, Frankfurt, Strikman 96

Collinear factorization of amplitude GPD \times Hard scattering \times Meson dist. amp.

GPD as transition matrix element of twist-2 operator: Gluonic form factor of nucleon $x_1 = x_2, t = 0$: Usual gluon density

• Space-time picture in rest frame Brodsky et al. 94

Coherence length $l_{\rm coh} \gg 1 \, {\rm fm}$

$$A = \int d^2 r_T \ \psi_{\gamma}(\boldsymbol{r}_{\mathrm{T}}) \ \underbrace{A_{Q\bar{Q}N}(\boldsymbol{r}_{\mathrm{T}})}_{\propto} \ \psi_{J/\psi}(\boldsymbol{r}_{\mathrm{T}})$$

$$\propto \ \boldsymbol{r}_{\mathrm{T}}^2 \ \alpha_s \ \mathsf{GPD}(\mathsf{Scale} \propto \boldsymbol{r}_{\mathrm{T}}^{-2})$$

Distribution of $Q\bar{Q}$ sizes determined dynamically, changes with energy, electroproduction Q^2 $_{\rm Cf.\ Color\ tranparency}$

GPD as transition color dipole moment

High W: **Data and interpretation**

х

• J/ψ photo/electroproduction at high W well understood HERA data, extensive literature

Experimental tests of small–size regime Universality of t-slopes above $Q^2 \sim 10 \text{ GeV}^2$

GPD/dipole calc's describe cross sections Frankfurt et al. 95; Goloskokov, Kroll 08+; ...

• Transverse spatial distribution of gluons

Fourier $\Delta_{\mathrm{T}}
ightarrow b$ impact parameter

Distribution changes with x and scale Q^2 : Parton diffusion, DGLAP evolution

Fundamental gluonic size of nucleon in QCD: Gluon vs. quark radii, non-pert. dynamics

Input for small-x physics: Evolution equations, saturation

Needed for pp@LHC: Underlying event, multiparton processes, diffraction

"Gluon imaging" with EIC

Near threshold: Reaction mechanism

• Near-threshold kinematics Large $|t_{\min}|$, up to 2.2 GeV² Large longit. momentum transfer $x_1 - x_2 = \zeta$

• Reaction mechanism near threshold Strikman, CW, in progress

 $\gamma gg \, J/\psi$ vertex local on scale $R_{
m nucl} \sim 1\,{
m fm}$

 $\begin{array}{ll} {\rm Amp} \sim A(s) F_{gg}(t) & {\rm local gluonic form factor.} \\ {\rm Energy \ dependence \ through \ } F_{gg}(t_{\min}) \\ {\rm Consistent \ with \ existing \ low-energy \ data.} \end{array}$

Can be tested with JLab 12 GeV!

• Theoretical questions

Matching collinear \leftrightarrow short-distance expansion?

Quantum numbers of gluonic operator?

Behavior of two-gluon form factor? Correlated configurations in nucleon LCWF? Cf. model of Brodsky, Chudakov, Hoyer, Laget 01

Near-threshold: Nuclei and ψN interaction

- Kinematics of ψN scattering
 - $t\approx 0$ accessible at all $W>W_{\rm th}$
 - "Ideal process" for probing color fields in hadrons and nuclei!
- Physics of low–energy ψN interaction

Operator expansion: Dipole-dipole interaction Fuji, Kharzeev 99

Van-der-Waals force of QCD Brodsky, Miller 97

Nuclear bound states? Brodsky, de Teramond 90; Luke, Manohar, Savage 92

• Near-threshold $\gamma A \rightarrow J/\psi + X$

 $rac{p_\psi}{m_\psi} pprox rac{m_\psi}{2m_N} \quad J/\psi$ fast, relativistic!

Produced J/ψ is fast — How to study bound states? 9

Summary

- J/ψ as small-size probe of color fields in hadrons "moderately small," relativistic
- High–W photo/electroproduction at probes gluon GPD Transverse spatial distribution of gluons at fixed x
- Near-threshold photo/electroproduction probes local gluonic form factor Theory/phenomenology developing "New physics" accessible with JLab 12 GeV!
- J/ψ fast in photoproduction

Possible to study transparency, ψN interaction How to explore nuclear bound states?

• Oopen charm production near threshold Extension of "local operator" mechanism at low W? Common theoretical description of J/ψ and $D\Lambda_c$? What can be learned from open charm?