Photoproduction of Mesons at CBELSA/TAPS

Volker Credé

Florida State University, Tallahassee, FL

Topical Workshop: Nuclear Photoproduction with GlueX

Jefferson Lab

04/29/2016

< 🗇 🕨

Outline

Introduction

- The Spectrum of Hadrons: Baryons and Mesons
- 2 Spectroscopy of Baryon Resonances
 - Complete Experiments
 - Polarization Observables in $\gamma p \rightarrow N \pi$
 - Polarization Observables in $\gamma p \rightarrow p \omega$
 - 3 Decay Cascades of Excited Baryons
 - 4 (Very) Strange $\Xi \& \Omega$ Resonances
 - Spectroscopy at JLab
- 5 Summary and Outlook
 - Are we there yet?

・ 同 ト ・ ヨ ト ・ ヨ ト

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange \equiv & Ω Resonances Summary and Outlook

he Spectrum of Hadrons: Baryons and Mesons

Outline

Introduction

- The Spectrum of Hadrons: Baryons and Mesons
- Spectroscopy of Baryon Resonances
 - Complete Experiments
 - Polarization Observables in $\gamma p \rightarrow N \pi$
 - Polarization Observables in $\gamma p \rightarrow p \omega$
- 3 Decay Cascades of Excited Baryons
- (Very) Strange Ξ & Ω Resonances
 Spectroscopy at JLab
- 5 Summary and Outlook
 - Are we there yet?

イロン イロン イヨン イヨン

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange \equiv & Ω Resonances Summary and Outlook

The Spectrum of Hadrons: Baryons and Mesons

Hadrons: Baryons & Mesons

The strong coupling confines quarks and breaks chiral symmetry, and so defines the world of light hadrons.

Baryons are special because

- Their structure is most obviously related to the color degree of freedom, e.g. |Δ⁺⁺⟩ = |u[↑]u[↑]u[↑]⟩.
- They are the stuff of which our world is made.

Baryons

Mesons

Strong Coupling QCD

ヘロン ヘロン ヘビン ヘビン

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange \equiv & Ω Resonances Summary and Outlook

The Spectrum of Hadrons: Baryons and Mesons

Hadrons: Baryons & Mesons

The strong coupling confines quarks and breaks chiral symmetry, and so defines the world of light hadrons.

Baryons are special because

Their structure is most obviously related to the color degree of freedom, e. g. |Δ⁺⁺⟩ = |u[↑]u[↑]u[↑]⟩.

V. Credé

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange \equiv & Ω Resonances Summary and Outlook

The Spectrum of Hadrons: Baryons and Mesons

Hadrons: Baryons & Mesons

The strong coupling confines quarks and breaks chiral symmetry, and so defines the world of light hadrons.

Baryons are special because

Their structure is most obviously related to the color degree of freedom, e. g. |Δ⁺⁺⟩ = |u[↑]u[↑]u[↑]⟩.

Many Y^* QN not measured: (Quark model assignments) \rightarrow many Ξ^* and Ω^* , etc.

イロト 不得 とくほ とくほ とうほ

V. Credé

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange \equiv & Ω Resonances Summary and Outlook

The Spectrum of Hadrons: Baryons and Mesons

Non-Perturbative QCD

How does QCD give rise to excited hadrons?

- What is the origin of confinement?
- How are confinement and chiral symmetry breaking connected?
- What role do gluonic excitations play in the spectroscopy of light hadrons, and can they help explain quark confinement?

Baryons: What are the fundamental degrees of freedom inside a nucleon? Constituent quarks? How do the degrees change with varying quark masses?

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange Ξ & Ω Resonances Summary and Outlook

The Spectrum of Hadrons: Baryons and Mesons

V. Credé

Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange Ξ & Ω Resonances Summary and Outlook

The Spectrum of Hadrons: Baryons and Mesons

Spectrum of N* Resonances

V. Credé

Complete Experiments Polarization Observables in $\gamma p o N \, \pi$ Polarization Observables in $\gamma p o p \, \omega$

Outline

イロン イロン イヨン イヨン

Complete Experiments Polarization Observables in $\gamma p o N \, \pi$ Polarization Observables in $\gamma p o p \, \omega$

Spectrum of *N*^{*} **Resonances** N* $J^{P}(L_{2I,2J})$ 2010 2014 3000 N(1440) $1/2^+ (P_{11})$ * * ** * * ** N(1520) $3/2^{-}(D_{13})$ * * ** N(1535) $1/2^{-}(S_{11})$ ** N(1650) $1/2^{-}(S_{11})$ N(1675) $5/2^{-}(D_{15})$ 2500 * * ** N(1680) $5/2^+$ (F₁₅) N(1685) N(1700) $3/2^{-}(D_{13})$ * * * N(1710) $1/2^+ (P_{11})$ Mass [MeV] N(1720) $3/2^+$ (P₁₃) 2000 $5/2^{+}$ N(1860) ** N(1875) $3/2^{-}$ N(1880) $1/2^{+}$ ** $1/2^{-}$ N(1895) ** $3/2^+(P_{13})$ 1500 N(1900) ** * * N(1990) $7/2^+$ (F₁₇) ** $5/2^+$ (F₁₅) N(2000) ** ** -N(2080) D_{13} ** -N(2090) S₁₁ $3/2^{+}$ N(2040) 1000 * N(2060) $5/2^{-}$ ** $1/2^+ (P_{11})$ N(2100) 4 1/2 +3/2 +5/2+ 7/2+ 9/2+ 11/2+ 13/2-Jπ N(2120) 3/2 $7/2^{-}(G_{17})$ N(2190) * * ** * * ** N(2200) D_{15} V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013) **

V. Credé

Complete Experiments Polarization Observables in $\gamma p o N \pi$ Polarization Observables in $\gamma p o p \, \omega$

Polarization Transfer in $\vec{\gamma} p \rightarrow K^+ \vec{\Lambda}$: C_x , C_z

V. Credé

Complete Experiments Polarization Observables in $\gamma p
ightarrow N \, \pi$ Polarization Observables in $\gamma p
ightarrow p \, \omega$

V. Credé

Complete Experiments Polarization Observables in $\gamma p
ightarrow N \pi$ Polarization Observables in $\gamma p
ightarrow p \omega$

High Statistics Study of the Reaction $\gamma p \rightarrow p \pi^0 \eta$

E. Gutz, V.C. et al. [CBELSA/TAPS Collaboration], Eur. Phys. J. A 50, 74 (2014)

$$\Delta^* \rightarrow N(1535) \frac{1}{2} \pi \rightarrow p \pi \eta$$

V. L. Kashevarov *et al.*, EPJ A **42**, 141 (2009) @MAMI

Complete Experiments Polarization Observables in $\gamma p
ightarrow N \pi$ Polarization Observables in $\gamma p
ightarrow p \omega$

High Statistics Study of the Reaction $\vec{\gamma} p \rightarrow p \pi^0 \eta$

E. Gutz, V.C. et al. [CBELSA/TAPS Collaboration], Eur. Phys. J. A 50, 74 (2014)

V. Credé Photoproduction of Mesons at CBELSA/TAPS

Complete Experiments Polarization Observables in $\gamma p o N \, \pi$ Polarization Observables in $\gamma p o p \, \omega$

Baryon Spectroscopy from Lattice QCD

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of levels consistent with non-rel. quark model, no parity doubling.

 $\label{eq:spectroscopy} Introduction \\ \mbox{Spectroscopy of Baryon Resonances} \\ \mbox{Decay Cascades of Excited Baryons} \\ (Very) Strange \equiv \& \Omega Resonances \\ Summary and Outlook \\ \mbox{Summary and Outlook} \\ \mbox{Summary and Outlook} \\ \mbox{Spectroscopy} \\ \$

Complete Experiments Polarization Observables in $\gamma p o N \pi$ Polarization Observables in $\gamma p o p \omega$

Components of the Experimental N* Program

The excited baryon program has two main components:

- Probe resonance transitions at different distance scales Electron beams are ideal to measure resonance form factors and their corresponding Q² dependence.
 - → Provides information on the structure of excited nucleons and on the confining (effective) forces of the 3-quark system.
- Establish the systematics of the spectrum Current medium-energy experiments use photon beams to map out the baryon spectrum (JLab, ELSA, MAMI, SPring-8, etc.).
 - Provides information on the nature of the effective degrees of freedom in strong QCD and also addresses the issue of previously unobserved or so-called *missing resonances*.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\label{eq:spectroscopy} Introduction \\ \ensuremath{\mathsf{Spectroscopy}}\ of Baryon Resonances \\ Decay Cascades of Excited Baryons \\ (Very) Strange \Xi \& \Omega Resonances \\ Summary and Outlook \\ \ensuremath{\mathsf{Summary}}\ and Outlook \\ \ensuremath{\mathsf{Summary}}\ and Outlook \\ \ensuremath{\mathsf{Summary}}\ and Strange \\ \ensuremath{\mathsf{Summary}}\ and Strange \\ \ensuremath{\mathsf{Summary}}\ and Strange \\ \ensuremath{\mathsf{Summary}}\ and \\ \ensuremath{\mathsf{Summary}$

Complete Experiments Polarization Observables in $\gamma p o N \, \pi$ Polarization Observables in $\gamma p o p \, \omega$

Helicity Amplitudes for the "Roper" Resonance

Data from CLAS *A*_{1/2} and *S*_{1/2} amplitudes: e.g. V. Mokeev *et al.*, PRC **86**, 035203 (2012); PRC **80**, 045212 (2009).

q³G hybrid state

ъ

< 🗇 🕨

Consistency between both channels ($N\pi\pi$, $N\pi$): sign change, magnitude, ...

- At short distances (high Q^2), Roper behaves like radial excitation.
- Low Q² behavior not well described by LF quark models: e.g. meson-baryon interactions missing
- → Gluonic excitation likely ruled out!

 $\label{eq:spectroscopy} Introduction \\ \mbox{Spectroscopy of Baryon Resonances} \\ \mbox{Decay Cascades of Excited Baryons} \\ (Very) Strange \equiv \& \Omega Resonances \\ Summary and Outlook \\ \mbox{Summary and Outlook} \\ \mbox{Summary and Outlook} \\ \mbox{Spectroscopy} \\ \$

Complete Experiments Polarization Observables in $\gamma p o N \pi$ Polarization Observables in $\gamma p o p \omega$

Components of the Experimental *N*^{*} Program

The excited baryon program has two main components:

- Probe resonance transitions at different distance scales Electron beams are ideal to measure resonance form factors and their corresponding Q² dependence.
 - → Provides information on the structure of excited nucleons and on the confining (effective) forces of the 3-quark system.
- Establish the systematics of the spectrum Current medium-energy experiments use photon beams to map out the baryon spectrum (JLab, ELSA, MAMI, SPring-8, etc.).
 - ➔ Provides information on the nature of the effective degrees of freedom in strong QCD and also addresses the issue of previously unobserved or so-called *missing resonances*.

ヘロア 人間 アメヨア 人口 ア

ъ

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Why are Polarization Observables Important?

★ Ξ > ★ Ξ >

Atomic Spectrum of Hydrogen

V. Credé Photoproduction of Mesons at CBELSA/TAPS

 $\begin{array}{l} \mbox{Complete Experiments} \\ \mbox{Polarization Observables in } \gamma \rho \rightarrow N \, \pi \\ \mbox{Polarization Observables in } \gamma \rho \rightarrow \rho \, \omega \end{array}$

Why are Polarization Observables Important?

without polarizer ... b

but there is more.

Atomic Spectrum of Hydrogen

Baryon are broad and overlapping ...

V. Credé Photoproduction of Mesons at CBELSA/TAPS

 $\begin{array}{l} \mbox{Complete Experiments} \\ \mbox{Polarization Observables in } \gamma \rho \rightarrow N \ \pi \\ \mbox{Polarization Observables in } \gamma \rho \rightarrow \rho \ \omega \end{array}$

Why are Polarization Observables Important?

For single-meson production:

$$\frac{1\sigma}{I\Omega} = \sigma_0 \left\{ 1 - \delta_I \Sigma \cos 2\phi + \Lambda_x \left(-\delta_I H \sin 2\phi + \delta_\odot F \right) - \Lambda_y \left(-T + \delta_I P \cos 2\phi \right) - \Lambda_z \left(-\delta_I G \sin 2\phi + \delta_\odot E \right) \right\}$$

Chiang & Tabakin, Phys. Rev. C55, 2054 (1997)

In order to determine the full scattering amplitude without ambiguities, one has to carry out eight carefully selected measurements: <u>four</u> double-spin observables along with <u>four</u> single-spin observables.

Eight well-chosen measurements are needed to fully determine production amplitudes F_1 , F_2 , F_3 , and F_4 .

Complete Experiments

Example: Ambiguities in $\gamma p \rightarrow p \pi^0$

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \mu$

 $\begin{array}{l} \mbox{Complete Experiments} \\ \mbox{Polarization Observables in } \gamma p \rightarrow N \ \pi \\ \mbox{Polarization Observables in } \gamma p \rightarrow p \ \omega \end{array}$

Experimental Facilities

CBELSA/TAPS at ELSA

Meson photoproduction:

•
$$\gamma p \rightarrow p \pi^{0} \rightarrow p \gamma \gamma$$

• $\gamma p \rightarrow p \eta \rightarrow p \gamma \gamma, \ p 3\pi^{0}, \ p \pi^{+} \pi^{-} \pi^{0}$
• $\gamma p \rightarrow p \omega \rightarrow p \pi^{0} \gamma, \ \pi^{+} \pi^{-} \pi^{0}$

V. Credé

Jefferson Laboratory

Complete Experiments

Double-Polarization: Toward Complete Experiments

Calorimeter system at ELSA is optimized for neutral particles.

V. Credé

 $\begin{array}{l} \mbox{Complete Experiments} \\ \mbox{Polarization Observables in } \gamma \rho \rightarrow N \ \pi \\ \mbox{Polarization Observables in } \gamma \rho \rightarrow \rho \ \omega \end{array}$

Double-Polarization: Frozen Spin Targets

- Horizontal cryostat with integrated solenoid to freeze the proton spin.
 - DNP at high B-field (2.5 T), holding mode at 0.4 T
 - Relaxation time at ELSA \sim 500 h

"CLAS"

"ELSA"

Transverse Target Polarization (race-track coil - Dipole Magnet)

Longitudinally-Polarized Target ($P_z \approx 80$ %)

Polarization Observables in $\gamma p \rightarrow N \pi$

Photoproduction of Mesons at CBELSA/TAPS

Helicity Asymmetry E in $\vec{\gamma} \, \vec{p} \rightarrow p \pi^0$ @ ELSA

V. Credé

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

 $E_{\gamma} \in [0.6, 2.2] \text{ GeV}$

- CBELSA/TAPS
- Maid
- Said (CM12)
 - BoGa (2011 2)

Angular distributions sensitive to interference between resonances.

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Asymmetry *G* in $\vec{\gamma} \, \vec{p} \rightarrow p \, \pi^0$ @ ELSA

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Asymmetry *G* in $\vec{\gamma} \, \vec{p} \rightarrow p \, \pi^0$ @ ELSA

 $\frac{d\sigma}{d\Omega} = \sigma_0 \left\{ 1 - \delta_I \Sigma \cos 2\phi + \Lambda_x \left(-\delta_I H \sin 2\phi + \delta_\odot F \right) - \Lambda_y \left(-T + \delta_I P \cos 2\phi \right) - \Lambda_z \left(-\delta_I G \sin 2\phi + \delta_\odot E \right) \right\}$

Surprisingly, π production also not well understood at lower energies.

Below 1 GeV, discrepancies can be traced to the E_{0^+} and E_{2^-} multipoles, which are related to certain resonances:

$$\begin{split} E_{0^+} : & N(1535) \frac{1}{2}^-, \, N(1650) \frac{1}{2}^-, \, \Delta(1620) \frac{1}{2}^- \\ E_{2^-} : & N(1520) \frac{3}{2}^-, \, \Delta(1700) \frac{3}{2}^- \end{split}$$

イロト イポト イヨト イヨト

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Baryon Resonances in the Reaction $\gamma \rho \rightarrow \rho \omega$

→ Vector-meson photoproduction (ω , ρ , ϕ) is still underexplored.

V. Credé

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Complete Experiments in $\gamma \, p \rightarrow p \, \omega$ (& $\gamma \, p \rightarrow p \, \pi^+ \pi^-$)

Bonn-Gatchina & CLAS PWA

- At least two $\frac{3}{2}^+$ states contributing
- Strong contribution of $N(2000) \frac{5}{2}^+$ (**)
- Possibly new resonance above 2.1 GeV

• Event-based background subtraction • $p\pi^{+}(\pi^{-}), p(\pi^{+})\pi^{-}, p\pi^{+}\pi^{-} \checkmark$ • $p\pi^{+}\pi^{-}(\pi^{0}) \checkmark p\pi^{+}\pi^{-}(\eta)?$ • Physics: $\frac{d\sigma}{d\Omega} = \sigma_{0} \{1 - \delta_{1}\Sigma\cos 2\phi + \delta_{0}F\}$ published (+ SDME's) $-\Lambda_{y}(-T + \delta_{1}P\cos 2\phi)$ in progress $-\Lambda_{z}(-\delta_{1}G\sin 2\phi + \delta_{0}E)\}$

full energy range

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Complete Experiments in $\gamma \, p \rightarrow p \, \omega$ (& $\gamma \, p \rightarrow p \, \pi^+ \pi^-$)

Bonn-Gatchina & CLAS PWA

- At least two $\frac{3}{2}^+$ states contributing
- Strong contribution of $N(2000) \frac{5}{2}^+$ (**)
- Possibly new resonance above 2.1 GeV

→
$$p\pi^+(\pi^-), p(\pi^+)\pi^-, p\pi^+\pi^-$$
 ✓
 $p\pi^+\pi^-(\pi^0)$ ✓ $p\pi^+\pi^-(\eta)$?

• Physics: $\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - \delta_1 \Sigma \cos 2\phi + \Lambda_x (-\delta_1 H \sin 2\phi + \delta_\odot F)$ published (+ SDME's) $-\Lambda_y (-T + \delta_1 P \cos 2\phi)$ in progress $-\Lambda_z (-\delta_1 G \sin 2\phi + \delta_\odot E) \}$

full energy range

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Complete Experiments in $\gamma p \rightarrow p \omega$: SDMEs

A. Wilson *et al.*, PLB **749**, 407 (2015) M. Williams *et al.*, PRC **80** 045213 (2009)

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Complete Experiments in $\gamma \, \rho \rightarrow \rho \, \omega$ (& $\gamma \, \rho \rightarrow \rho \, \pi^+ \pi^-$)

Spin-Density Matrix Elements: $\Sigma_{\omega} = \rho_{00}^1 + 2\rho_{11}^1$

$$W_1(\Omega_d, \rho) = \sin^2 \theta_d \rho_{00}^1 + (1 + \cos^2 \theta_d) \rho_{11}^1 + \sin^2 \theta_d \cos 2\phi_d \rho_{1-1}^1 + \sqrt{2} \sin 2\theta_d \cos \phi_d \operatorname{Re} \rho_{10}^1$$

Event-based background subtraction

→
$$p\pi^+(\pi^-), p(\pi^+)\pi^-, p\pi^+\pi^-$$
 ✓
 $p\pi^+\pi^-(\pi^0)$ ✓ $p\pi^+\pi^-(\eta)$?

• Physics: $\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - \delta_I \Sigma \cos 2\phi + \Lambda_x (-\delta_I H \sin 2\phi + \delta_\odot F)$ published (+ SDME's) $-\Lambda_y (-T + \delta_I P \cos 2\phi)$ in progress $-\Lambda_z (-\delta_I G \sin 2\phi + \delta_\odot E) \}$

full energy range

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Complete Experiments in $\gamma p \rightarrow p \omega$: SDMEs

→ Among non-resonant contributions: pomeron-exchange dominates.

A. Wilson et al. [CBELSA/TAPS], Phys. Lett. B 749, 407 (2015)

V. Credé Photoproduction of Mesons at CBELSA/TAPS

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Beam- & Target-Asymmetry in $\gamma p \rightarrow p \omega$

We are close to a complete experiment in $\gamma p \rightarrow p \omega$...

Target-Asymmetry (CLAS) (first-time measurement)

Priyashree Roy (Florida State), to be published

V. Credé

Complete Experiments Polarization Observables in $\gamma p \rightarrow N \pi$ Polarization Observables in $\gamma p \rightarrow p \omega$

Beam-Target Asymmetry *F* in $\vec{\gamma} \vec{p} \rightarrow p \omega$ (CLAS-g9b)

Priyashree Roy (Florida State), to be published

ヘロト ヘワト ヘビト ヘビト

Outline

・ロト ・回ト ・ヨト ・ヨト

Observation of Decay Cascades in $\gamma \rho \rightarrow \rho \pi^0 \pi^0$

F. Zehr et al., Eur. Phys. J. A 48, 98 (2012) @MAMI

Observation of Decay Cascades in $\gamma \rho \rightarrow \rho \pi^0 \pi^0$

Observation of new decay modes in the decay of N^* resonances; weak at most in Δ^* decays.

— Bonn-Gatchina PWA

Sokhoyan, Gutz, V.C. et al., EPJ A 51, no. 8, 95 (2015)

Nucleon states with $S = \frac{3}{2}$ require spatial wave functions of mixed symmetry. For L = 2 the wave functions do have equal admixtures of M_S and

$$\mathcal{M}_{\mathcal{A}} = \left[\phi_{0\rho}(\vec{\rho}) \times \phi_{0\rho}(\vec{\lambda}) \right]^{(L=2)},$$

a component in which both the ρ and the λ oscillator are excited simultaneously.

Observation of Decay Cascades in $\gamma \rho \rightarrow \rho \pi^0 \pi^0$

Decays observed in PWA into, e.g.

 $\begin{array}{c} N(1880) 1/2^+ \\ N(1900) 3/2^+ \\ N(2000) 5/2^+ \\ N(1990) 7/2^+ \end{array} \right\}$

 $N(1520)\pi$ $N(1535)\pi$ $N(1680)\pi$ $N\sigma$ (l = 1)

→ Quartet of (70, 2^+_2) with $S = \frac{3}{2}$.

Observation of new decay modes in the decay of N^* resonances; weak at most in Δ^* decays.

— Bonn-Gatchina PWA

Sokhoyan, Gutz, V.C. et al., EPJ A 51, no. 8, 95 (2015)

Nucleon states with $S = \frac{3}{2}$ require spatial wave functions of mixed symmetry. For L = 2 the wave functions do have equal admixtures of M_S and

$$\mathcal{M}_{\mathcal{A}} = \left[\phi_{0\rho}(\vec{\rho}) \times \phi_{0\rho}(\vec{\lambda}) \right]^{(L=2)},$$

a component in which both the ρ and the λ oscillator are excited simultaneously.

Outline

Spectroscopy at JLab

・ロト ・回ト ・ヨト ・ヨト

Spectroscopy at JLab

Cascade Spectrum and Multiplets

The decuplets consist of Δ^* , Σ^* , Ξ^* , and Ω^* resonances, but also the octets consist of an Ξ^* state.

→ We expect as many Ξ's as N* & Δ* states together. Moreover, their properties should be related.

Cascade Resonances: Status of 2015

V. Credé Photoproduction of Mesons at CBELSA/TAPS э

Introduction Spectroscopy of Baryon Resonances Decay Cascades of Excited Baryons (Very) Strange $\equiv \& \Omega$ Resonances

Summary and Outlook

Spectroscopy at JLab

Measurements at BNL in $K^-p \rightarrow K^+_{slow} + X^-$

"Existence of \equiv Resonances above 2 GeV" (C.M. Jenkins *et al.*, Phys. Rev. Lett. **51**, 951 (1983))

Observed Ξ States:

Ξ(1320)	****	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$
Ξ(1530)	****	$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$
Ξ(1820)	***	$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$
Ξ(2030)	***	$I(J^P) = \frac{1}{2} (\geq \frac{5}{2})^?$
Ξ(2370)	***	$I(J^P) = \frac{1}{2}(?^?)$
Ξ(2500)	***	$I(J^P) = \frac{1}{2}(?^?)$

Spectroscopy at JLab

CLAS g11a: Excited States in $\gamma p \rightarrow K^+ K^+ \pi^- (X)$

From the paper: Although a small enhancement is observed in the $\Xi^0 \pi^-$ invariant mass spectrum near the controversial 1-star $\Xi^-(1620)$ resonance, it is not possible to determine its exact nature without a full partial wave analysis.

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors

ヘロト ヘワト ヘビト ヘビト

Spectroscopy at JLab

Possible Production Mechanisms

 $K^{+}(\Xi^{-}K^{+}), \ K^{+}(\Xi^{0}K^{0}), \ K^{0}(\Xi^{0}K^{+})$

→ Cross sections, beam asymmetries (similar to $p \pi \pi \& p KK^*$)

Production of excited states via a

forward-going K⁰ meson

$$\Rightarrow K^0 (\Xi^- \pi^+) K^+, \text{ etc.}$$

2) forward-going K^+ meson

→
$$K^+ (\Xi^- \pi^+) K^0$$
,
 $K^+ (\Xi^0 \pi^-) K^+$, etc.

* W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

Spectroscopy at JLab

Ξ Spectroscopy with the GlueX Detector

The Ξ octet ground states (Ξ^0 , Ξ^-) will be challenging to study via exclusive *t*-channel (meson exchange) production. The typical final states have kinematics for which the baseline GlueX detector has very low acceptance due to:

- the high-momentum forward-going kaon and
- the relatively low-momentum pions produced in the Ξ decay.

The production of the Ξ decuplet ground state, $\Xi(1530)$, and other excited Ξ 's decaying to $\Xi\pi$ results in a lower momentum kaon at the upper vertex, and these heavier Ξ states produce higher momentum pions in their decays.

The lightest excited Ξ states are expected to decouple from $\Xi\pi$ and can be searched for and studied also in their decays to $\Lambda \overline{K}$ and $\Sigma \overline{K}$:

$$\gamma p \rightarrow K Y^* \rightarrow K^+ (\overline{K} \Lambda)_{\equiv^{-*}} K^+, \quad K^+ (\overline{K} \Lambda)_{\equiv^{0*}} K^0, \quad K^0 (\overline{K} \Lambda)_{\equiv^{0*}} K^+,$$

$$\gamma p \rightarrow K Y^* \rightarrow K^+ (\overline{K}\Sigma)_{\Xi^{-*}} K^+, \quad K^+ (\overline{K}\Sigma)_{\Xi^{0*}} K^0, \quad K^0 (\overline{K}\Sigma)_{\Xi^{0*}} K^+.$$

・ロト ・ 理 ト ・ ヨ ト ・

Are we there yet?

Outline

The Spectrum of Hadrons: Baryons and Mesons Complete Experiments • Polarization Observables in $\gamma p \rightarrow N \pi$ • Polarization Observables in $\gamma p \rightarrow p \omega$ Spectroscopy at JLab Summary and Outlook 5 Are we there yet?

・ロト ・回ト ・ヨト ・ヨト

Are we there yet?

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- Can we identify unconventional states in the strangeness sector, e.g. a $\Lambda(1405)$ or the N(1440)?
- Oan we identify the leading interactions between the constituents?
- Do we understand the decay of high-mass baryon resonances? Is a similar dynamical mechanism applicable (hadronic d.o.f.)?
- Do we observe states *truely* beyond the simple $|qqq\rangle$ picture, e.g. in $\gamma n \rightarrow n\eta$?
- What are the missing resonances and why are so many still missing?

Are we there yet?

Summary and Outlook

Baryon Spectroscopy: Are we there, yet? Certainly not ...

New era in the spectroscopy of strange baryons (GlueX, LHCb, PANDA, ...)

- Mapping out the spectrum of Ξ baryons is the primary motivation (including parity measurements); some hope for peak hunting.
- Ground-state \equiv in $\gamma p \rightarrow KK \equiv$ will allow the spectroscopy of Σ^* / Λ^* states.

The multi-strange baryons provide a missing link between the light-flavor and the heavy-flavor baryons. Also:

- Do the lightest excited Ξ states in certain partial waves decouple from the $\Xi \pi$ channel, confirming the flavor independence of confinement?
- E baryons as a probe of excited hadron structure?
 - → Measurements of the isospin splittings in spatially excited Ξ states appear possible for the first time (similar to n p or $\Delta^0 \Delta^{++}$).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()