in-medium properties of mesons experimental results and perspectives

Volker Metag II. Physikalisches Institut

> JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Outline:

- theoretical predictions for in-medium modifications of hadron properties
- \blacklozenge exp. approaches and results on the real part of the ω,η '- nucleus potential
- \bullet exp. approaches and results on the imaginary part of the ω , η '- nucleus potential
- search for meson-nucleus bound states
- summary & outlook

*funded by the DFG within SFB/TR16

GlueX workshop, Jlab, Newport News, USA April 28/29, 2016

how strong is the strong interaction ??

the running coupling strength: $\alpha_s(Q)$

S. Bethge, Prog. Part. Nucl. Phys. 58 (2007) 351

for high momenta α_s ≪ 1:
 asymptotic freedom;
 ⇒ perturbative QCD

for low momenta $\alpha_s \lesssim I$ (large distances: $\approx Rp \approx 0.8$ fm) I.) lattice QCD

2.) QCD inspired models

strong QCD

QCD inspired models

models exploiting the symmetries of QCD

• chiral symmetry = fundamental symmetry of QCD for massless quarks $(m_q \rightarrow 0)$

• if chiral symmetry were to hold also in the hadronic sector, chiral partners (same spin; opposite parity) should be degenerate in mass: $m(J^+) = m(J^-)$

QCD inspired models

models exploiting the symmetries of QCD

• chiral symmetry = fundamental symmetry of QCD for massless quarks $(m_q \rightarrow 0)$

• if chiral symmetry were to hold also in the hadronic sector, chiral partners (same spin; opposite parity) should be degenerate in mass: $m(J^+) = m(J^-)$

• chiral symmetry broken in the hadronic sector mass split $\Delta m \approx 300-600$ MeV, almost comparable to hadron masses !!

QCD inspired models

models exploiting the symmetries of QCD

• chiral symmetry = fundamental symmetry of QCD for massless quarks $(m_q \rightarrow 0)$

• if chiral symmetry were to hold also in the hadronic sector, chiral partners (same spin; opposite parity) should be degenerate in mass: $m(J^+) = m(J^-)$

- chiral symmetry broken in the hadronic sector mass split $\Delta m \approx 300-600$ MeV, almost comparable to hadron masses !!
- if chiral symmetry were at least partially restored in the nuclear medium - as predicted in several theoretical approaches - $\Delta m \rightarrow 0$, hadron mass distributions in the medium should change !!

model predictions for in-medium mass/width of the η', ω, Φ meson

NJL-model

model predictions for the in-medium ρ spectral function

- structure in ρ spectral function: splitting into ρ-like and N*N⁻¹ mode due to coupling to baryon resonances
- strong momentum dependence of spectral function
- modifications most pronounced at small momenta

model predictions for the in-medium ρ spectral function

- structure in ρ spectral function: splitting into ρ-like and N*N⁻¹ mode due to coupling to baryon resonances
- strong momentum dependence of spectral function
- modifications most pronounced at small momenta

experimental task: search for { mass shift ? broadening? } of hadronic spectral functions structures? }

detector acceptance down to very small meson momenta needed !!!

calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at ρ ,T = const.;
- meson at rest in nuclear medium

theoretical predictions

calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at ρ ,T = const.;
- meson at rest in nuclear medium

calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at ρ ,T = const.;
- meson at rest in nuclear medium

transport calculations (GiBUU, HSD, UrQMD, ...) are needed for comparison with experiment !!!

- initial state effects: absorption of incoming beam particles
- non equilibrium effects: varying density and temperature
- absorption and regeneration of mesons
- fraction of decays outside of the nuclear environment
- final state interactions: distortion of momenta of decay products

sensitivity of the ω line shape measurement to in-medium modifications of the ω meson

 $m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$

J. Weil, U. Mosel, V. Metag, PLB 723 (2013) 120

 $\omega \rightarrow e^+e^-$ br: 7.3•10⁻⁵ $\omega \rightarrow \pi^0 \gamma$ br: 8.3%

- only 20-30 % of the ω decays occur within the nuclear medium; < d > = $\beta\gamma c\tau \approx 17$ fm
- a density dependent mass shift is smeared out due to the nuclear density profile

sensitivity of the ω line shape measurement to in-medium modifications of the ω meson

 $m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$

J.Weil, U. Mosel, V. Metag, PLB 723 (2013) 120

 $\omega \rightarrow e^+e^-$ br: 7.3•10⁻⁵ $\omega \rightarrow \pi^0 \gamma$ br: 8.3%

- only 20-30 % of the ω decays occur within the nuclear medium; < d > = $\beta\gamma c\tau \approx 17$ fm
- a density dependent mass shift is smeared out due to the nuclear density profile
- a density dependent mass shift is smeared out due to the in-medium collisional broadening of the ω-signal: Γ(ρ₀) ≈ 130 - 150 MeV
- due to π^0 absorption (π^0 -FSI) $\omega \rightarrow \pi^0 \gamma$ decays in the center of the nucleus are suppressed; only $\omega \rightarrow \pi^0 \gamma$ decays in the surface region can be reconstructed

H. Nagahiro and S. Hirenzaki, PRL 84 (2005) 232503

$$U(r) = V(r) + iW(r)$$

H. Nagahiro and S. Hirenzaki, PRL 84 (2005) 232503

$$U(r) = V(r) + iW(r)$$

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

H. Nagahiro and S. Hirenzaki, PRL 84 (2005) 232503

$$U(r) = V(r) + iW(r)$$

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

$$W(r) = -\Gamma_0/2 \cdot \frac{\rho(r)}{\rho_0}$$

$$W(r) = -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$$

real part

in-medium mass modification

imaginary part lifetime shortened in-medium width inelastic cross section

 ho_0

H. Nagahiro and S. Hirenzaki, PRL 84 (2005) 232503

$$U(r) = V(r) + iW(r)$$

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

$$W(r) = -\Gamma_0/2 \cdot \frac{\rho(r)}{\rho_0}$$

$$W(r) = -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$$

real part

Ĵ

in-medium mass modification

imaginary part **lifetime shortened** in-medium width inelastic cross section

mass and lifetime (width) may be changed in the medium

experimental approaches to determine the meson-nucleus optical potential

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

transparency ratio measurement

$$\Gamma_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

D. Cabrera et al., NPA 733 (2004)130

CBELSA/TAPS experiment

E_Y=1.2 - 2.9 GeV

solid target: ¹²C and ⁹³Nb

 4π photon detector: ideally suited for identification of multi-photon final states

$$ω \rightarrow π^0 γ \rightarrow 3 γ$$
 BR 8.5%
η'→π⁰π⁰η→6γ BR 8.5%

detector performance:

invariant mass spectra; acceptances

High acceptance Dielectron spectrometer (HADES@GSI)

beams from SIS18: protons, nuclei, pions 2.0 GeV < \sqrt{s} < 3.2 GeV

spectrometer with good particle identification and high invariant mass resolution: $\approx 2\%$ at ρ/ω

versatile detector for rare probes:

dielectrons e⁺e⁻

• strangeness:
$$\Lambda$$
 , $K \pm$, Σ , Ξ , Φ

detector performance:

particle identification; invariant mass spectra; acceptances

the real part of the meson-nucleus optical potential

in-medium ρ -spectral function from $\rho \rightarrow e^+e^-$

$$m(
ho,ec{p}) = \sqrt{(p_1+p_2)^2}$$

JLAB-CLAS: $\gamma A \rightarrow e^+e^-X$; E_y= 0.6-3.8 GeV

R. Nasseripour et al., PRL 99 (2007) 262302

detector performance: acceptance

in-medium Φ -spectral function from $\Phi \rightarrow e^+e^-$

 $m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$

KEK-E325: p (12 GeV) $A \rightarrow \rho$, $\omega + X$; $\Phi \rightarrow e^+e^-$

φ: cτ ≈ 46 fm

mass shift of Φ meson for low recoil momenta in Cu: $m_{\Phi} = m_0 (1-0.04 \ \rho/\rho_0)$ increase in width by a factor 3.6; $\Gamma_{\Phi}(\rho=\rho_0) \approx 15 \text{ MeV}$

improved experiment (E16) in preparation at JPARC

dilepton invariant mass spectra

HADES@GSI p + p, Nb 3.5 GeV

$$m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$$

G. Agakishiev et al., Phys. Lett. B 715 (2012) 304

shape of m_{ee} spectrum in p+Nb identical to reference spectrum in p+p dilepton invariant mass spectra

shape of m_{ee} spectrum in p+Nb identical to reference spectrum in p+p

- strong e⁺e⁻ excess yield below ω peak attributed to ρ-like channels;
- \bullet no hint for change in ω line shape;
- \bullet strong ω absorption

18

e

ρ

Ν

comparison to GiBUU simulations

comparison to different in-medium modification scenarios

HADES data

G.Agakishiev et al., Phys. Lett. B 715 (2012) 304 p+Nb at 3.5 GeV

- difficult to distinguish between different in-medium scenarios:
- difficult to disentangle ρ , ω contributions and to extract individual in-medium properties

 ω line shape from $\omega \rightarrow \pi^0 \gamma$ in photo-nuclear reaction

M.Thiel et al., EPJA 49 (2013) 132

advantage: no $\rho \rightarrow \pi^0 \gamma$ $\omega \rightarrow \pi^0 \gamma$ br: 8.3%

• line shape analysis: $m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$

- sensitivity limited by 5 effects:
- I) mass resolution $\sigma \approx 3\%$; only mass shifts $\gg 3\%$ observable
- 2) only 30% of all $\omega \rightarrow \pi^0 \gamma$ decays occur within the Nb nucleus
- W decays occur over a wide range of densities, thereby smearing out any density-dependent signal

4) $\omega \rightarrow \pi^0 \gamma$ signal smeared out and reduced due to large in-medium width ($\Gamma_{med} \approx 16 \cdot \Gamma_{vac}$)

5.) due to π^0 absorption (π^0 -FSI) $\omega \rightarrow \pi^0 \gamma$ decays in the center of the nucleus are suppressed the real part of the ω -nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point

- measurement of the excitation function
 - of the meson

in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

the real part of the ω -nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point

measurement of the excitation function of the meson

in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

• momentum distribution of the meson:

in case of dropping mass - when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy

\Rightarrow downward shift of momentum distribution

 $\pi^0\gamma$ momentum distribution

vac (0.616

excitation function for ω photoproduction off C comparison with GiBUU calculation

CB/TAPS @ MAMI

V. Metag et al., PPNP, 67 (2012) 530

M. Thiel et al., EPJA 49 (2013) 132

 $V(\rho = \rho 0) = -(42 \pm 17(\text{stat}) \pm 20(\text{syst})) \text{ MeV}$

data not consistent with strong mass shift scenario ($\Delta m/m \approx -16\%$)
excitation function and momentum distribution for η' photoproduction off C

data disfavour strong mass shifts

excitation function and momentum distribution for RELIMINAR η photoproduction off Nb

CBELSA/TAPS @ ELSA

calc.: E. Paryev, priv. communication

data disfavour strong mass shifts

compilation of results for the real part of the ω - and η '-nucleus optical potential

 $V_{\omega A}(\rho = \rho_0) =$ -(29±19(stat)±20(syst))MeV

 $V_{\eta'A}(\rho = \rho_0) =$ -(40±5(stat)±15(syst)) MeV

the imaginary part of the meson-nucleus optical potential: momentum dependence

momentum differential cross section for ω, η' produced off C, Nb

27

momentum dependence of transparency ratio for ω , η'

absorption of η ' mesons much weaker than for ω mesons !!

momentum dependence of imaginary potential for ω, η'

ω

 extension to high moment allows for dispersion relation analysis, providing link between real and imaginary part of potential ή

compilation of results for real and imaginary part of the ω, η' -nucleus optical potential ω η $U_{\omega A}(\rho = \rho_0) =$ $U_{n'A}(\rho = \rho_0) =$ -((29±19(stat)±20(syst) + i(29±5)) MeV -((40±5(stat)±15(syst) + i(10±3)) MeV imaginary part [MeV] 6 00 00 Re U | << | Im U | V. Metag (\mathbf{J}) Hyp.Int. 234 (2015) 25 30 20 n 10 Re U >> Im U 0 10 20 30 potential depth [MeV] $| \text{Im U} | \approx | \text{Re U} | ; \Rightarrow \omega \text{ not a good candidate}$ Re U >> Im U ; $\Rightarrow \eta$ 'promising <u>candidate</u> to search for mesic !! to search for meson-nucleus bound states!

first (indirect) observation of in-medium mass shift of η ' at $\rho = \rho_0$ and T=0 in good agreement with QMC model predictions (S. Bass et al., PLB 634 (2006) 368) 30

search for η '-mesic states in hadronic reactions

¹²C(p,d)η'⊗¹¹C

K. Itahashi et al., PETP 128 (2012) 601 H. Nagahiro et al., PRC 87 (2013) 045201

particle identification by time-of-flight

search for η '-mesic states in hadronic reactions

¹²C(p,d)η'⊗¹¹C

K. Itahashi et al., PETP 128 (2012) 601 H. Nagahiro et al., PRC 87 (2013) 045201

BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

<u>outlook</u>: search for η '-mesic states in photo-nuclear reactions

approved proposal: ELSA/3-2012-BGO

outlook: charmonium properties in cold nuclear matter

E. Ya. Paryev and Yu. T. Kiselev, arXiv: 1510.00155

$$E_{\gamma} = 6 - II GeV$$

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

transparency ratio $\Rightarrow \Gamma(\rho = \rho_0) \Rightarrow \text{Im U}$

how does the intrinsic structure of hadrons change in a nuclear medium ?? meson properties do change in a strongly interacting medium !!

how does the intrinsic structure of hadrons change in a nuclear medium ?? meson properties do change in a strongly interacting medium !!

• meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx 1.3 fm)

how does the intrinsic structure of hadrons change in a nuclear medium ?? meson properties do change in a strongly interacting medium !!

- meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx 1.3 fm)
- detector acceptance down to small meson momenta needed

how does the intrinsic structure of hadrons change in a nuclear medium ??

- meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx I.3 fm)
- detector acceptance down to small meson momenta needed
- in-medium properties of mesons can be derived from measurements of excitation function meson momentum distribution $\begin{cases} \Rightarrow & \Delta m(\rho = \rho_0); \text{ Re U} \\ \Rightarrow & \Gamma(\rho = \rho_0); \text{ Im U} \end{cases}$

how does the intrinsic structure of hadrons change in a nuclear medium ??

- meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx I.3 fm)
- detector acceptance down to small meson momenta needed
- in-medium properties of mesons can be derived from measurements of excitation function meson momentum distribution $\} \Rightarrow \Delta m(\rho = \rho_0)$; Re U transparency ratio $\Rightarrow \Gamma(\rho = \rho_0)$; Im U
- all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 60 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 20 \text{ MeV};$

how does the intrinsic structure of hadrons change in a nuclear medium ??

- meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx I.3 fm)
- detector acceptance down to small meson momenta needed
- in-medium properties of mesons can be derived from measurements of excitation function meson momentum distribution $\begin{cases} \Rightarrow & \Delta m(\rho = \rho_0); \text{ Re U} \\ \Rightarrow & \Gamma(\rho = \rho_0); \text{ Im U} \end{cases}$
- all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 60 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 20 \text{ MeV};$
- large mass modifications $|\Delta m| > 100$ MeV have not been observed
- for η ' meson in-medium mass drop of $\Delta m (\rho = \rho_0) \approx -40 \text{ MeV}$ determined

how does the intrinsic structure of hadrons change in a nuclear medium ??

- meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx I.3 fm)
- detector acceptance down to small meson momenta needed
- in-medium properties of mesons can be derived from measurements of excitation function meson momentum distribution $\begin{cases} \Rightarrow & \Delta m(\rho = \rho_0); \text{ Re U} \\ \Rightarrow & \Gamma(\rho = \rho_0); \text{ Im U} \end{cases}$
- all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 60 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 20 \text{ MeV};$
- large mass modifications $|\Delta m| > 100$ MeV have not been observed
- for η ' meson in-medium mass drop of $\Delta m (\rho = \rho_0) \approx -40 \text{ MeV}$ determined
- the η ' meson is a good candidate for forming meson-nucleus bound states since $|\text{Im U}| << |\text{Re U}| \Rightarrow$ search for η ' mesic states ongoing

how does the intrinsic structure of hadrons change in a nuclear medium ??

- meson line shape measurements are difficult for all mesons longer lived than the ρ meson (cT \approx I.3 fm)
- detector acceptance down to small meson momenta needed
- in-medium properties of mesons can be derived from measurements of excitation function meson momentum distribution $\begin{cases} \Rightarrow & \Delta m(\rho = \rho_0); \text{ Re U} \\ \Rightarrow & \Gamma(\rho = \rho_0); \text{ Im U} \end{cases}$
- all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 60 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 20 \text{ MeV};$
- large mass modifications $|\Delta m| > 100$ MeV have not been observed
- for η ' meson in-medium mass drop of $\Delta m (\rho = \rho_0) \approx -40$ MeV determined
- the η' meson is a good candidate for forming meson-nucleus bound states since | Im U| << |Re U| ⇒ search for η' mesic states ongoing
- study in-medium properties (mass, width) of the J/ ψ meson $\ref{eq:product}$

status of experiments in 2016

	LEPS@ SPring-8	CLAS @JLAB	CBELSA/ TAPS	E-325 @KEK	ANKE @COSY	CERES @CERN	NA60 @CERN
reaction	γA I.5-2.4 GeV	γA I.5-2.4 GeV	γA 0.7-2.9 GeV	рА I2 GeV	рА 2.8 GeV	Au+Au I 58 AGeV	In+ In I 58 AGeV
momentum acceptance	p > 1.0 GeV/c	p > 0.8 GeV/c	р > 0.0 GeV/c	р > 0.5 GeV/c	p > 0.6 GeV/c	p _t > 0.0 GeV/c	p _t > 0.0 GeV/c
ρ		Δm≈0 Γ(ρ₀/2) ≈ 220 MeV		Δm/m= -9% ΔΓ≈ 0		∆m≈0 broadening	∆m≈0 broadening
ω		Γ(ρ₀) > 200 MeV	Δm≈-30 MeV Γ(ρ _{0, P} =0) ≈ 60 MeV	Δm/m= -9% ΔΓ≈ 0			
η'			Δm≈-40 MeV Γ(ρ _{0,P} =0) ≈20 MeV				
Φ	Γ(ρ₀)≈ I00 MeV	Γ(ρ₀)≈ 40-200 MeV		Δm/m≈-3.4% Γ(ρ₀/2)≈ I5 MeV	Γ(ρ₀)≈ 30-60 MeV		

search for ω -mesic states

intensity in bound state region consistent with tail due to large imaginary part

the higher the attraction the lower the kinetic energy of the ω meson

H. Nagahiro, priv. com.

real part of ω -nucleus potential from ω kinetic energy CBELSA/TAPS @ ELSA ω E_y=1.25-3.1 GeV $\mathbf{p}_{|0 \le \theta_p \le ||^0}$ the higher the attraction the lower the kinetic energy of the ω meson H. Nagahiro, priv. com. S. Friedrich, PhD thesis (Univ. Giessen) peak position [MeV] d²ଫ୍_ୟ୍/dE_{kin} dΩ [nb/MeV/sr] _____; d²o,/dE_{kin} dΩ [nb/MeV/sr] 2.2 80 Carbon 70

 $W_{\omega} (\rho = \rho_0) = -\Gamma_0/2 = -(70 \pm 10) \text{ MeV}$

 $V_{\omega}(\rho = \rho_0) = -(15 \pm 35) \text{ MeV}$

transparency ratio for ω and η ' mesons for different nuclei

$$T = \frac{\sigma_{\gamma A \to \omega X}}{Z_{eff} \cdot \sigma_{(\gamma p_{bound} \to \omega p)} + N_{eff} \cdot \sigma_{(\gamma n_{bound} \to \omega n)}}$$

data on photo production cross sections off bound proton and neutron from ω: F. Dietz et al., EPJA 51(2015) 6 η': I. Jaegle et al., EPJA 47 (2011) 11

model predictions for in-medium mass/width of the η ' meson

NJL-model

[Me∨]

model predictions for in-medium mass/width of the ω , Φ meson

with increasing nuclear density spect

- lowering of in-medium mass
- broadening of resonance

sity spectral function for ω at rest:

- almost no mass shift;
- strong in-medium broadening

 $\Delta m/m < 2\%$ asymmetric broadening $\Gamma(\rho_0) \approx 45 \text{ MeV}$

transparency ratio for ω and η ' mesons for different nuclei

$$T = \frac{\sigma_{\gamma A \to \omega X}}{Z_{eff} \cdot \sigma_{(\gamma p_{bound} \to \omega p)} + N_{eff} \cdot \sigma_{(\gamma n_{bound} \to \omega n)}}$$

data on photo production cross sections off bound proton and neutron from ω: F. Dietz et al., EPJA 51(2015) 6 η': I. Jaegle et al., EPJA 47 (2011) 11

in-medium width from transparency ratio

Glauber model analysis in high energy eikonal approximation

momentum dependence of in-medium width $\Gamma_0(\rho = \rho_0)$

ω

η

inelastic absorption cross section $\sigma_{inel}(p)$

in-medium width from transparency ratio

Glauber model analysis in high energy eikonal approximation

momentum dependence of in-medium width $\Gamma_0(\rho = \rho_0)$

ω

η

inelastic absorption cross section $\sigma_{inel}(p)$

