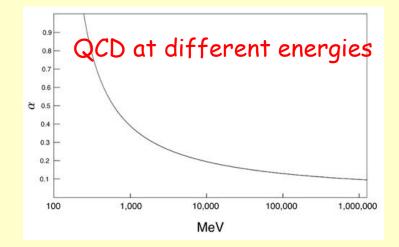
PrimEx Experiments and the Prospects of Rare n Decays at GlueX

Liping Gan University of North Carolina Wilmington

Outline


- > Challenges in Physics
- Precision tests of continuous symmetries of confinement QCD via the PrimEx experiments
- Testing discrete symmetries and searching for new physics via the n rare decays

Challenges in Physics

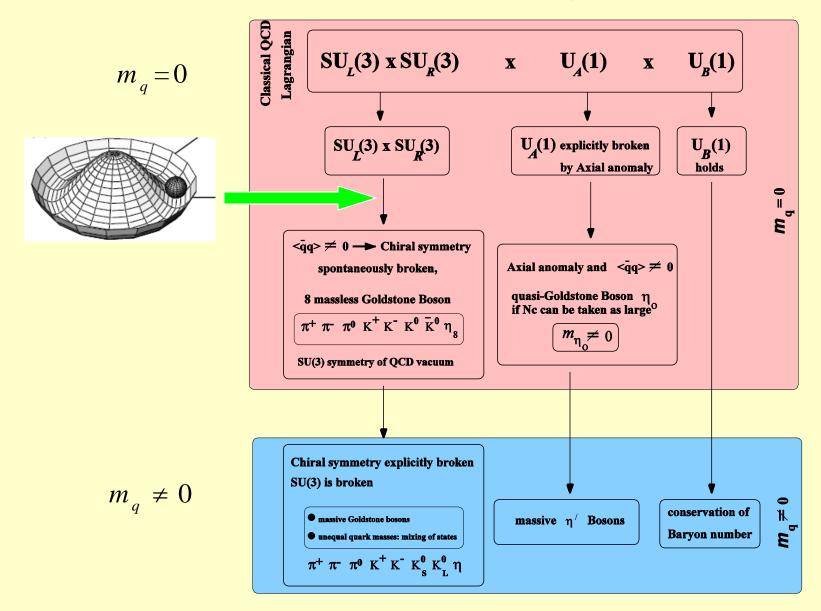
Confinement QCD

- Lattice QCD
- Chiral perturbation theory

- New physics beyond the Standard Model (SM)
 - New sources of symmetry violation
 - Dark matter
 - Dark energy

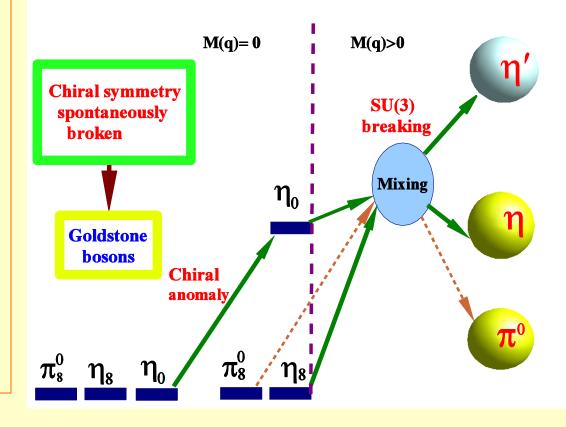
"As far as I see, all a priori statements in physics have their origin in symmetry". By H. Weyl

Continuous symmetries of confinement QCD chiral limit: is the limit of vanishing quark masses $m_q \rightarrow 0$.


QCD Lagrangian with quark masses set to zero:

$$L_{QCD}^{(o)} = \overline{q}_{L} \gamma_{\mu} i D_{\mu} q_{L} + \overline{q}_{R} \gamma_{\mu} i D_{\mu} q_{R} - \frac{1}{4} G_{\mu\nu}^{\alpha} G^{\alpha\mu\nu}$$
$$D_{\mu} = \partial_{\mu} - g_{s} \lambda_{\alpha} / 2 G_{\mu}^{\alpha}$$
$$q = \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad q_{R,L} = \frac{1}{2} (1 \pm \gamma_{5}) q$$

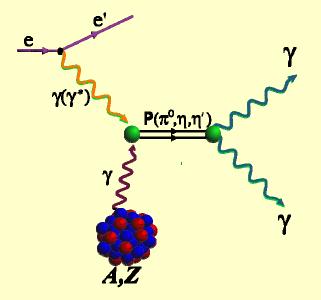
Large global symmetry group:


$$SU_{L}(3) \times SU_{R}(3) \times U_{A}(1) \times U_{B}(1)$$

Fate of QCD symmetries

Lightest pseudoscalar mesons

- Chiral $SU_L(3)XSU_R(3)$ spontaneously broken Goldstone mesons π^0 , n₈
- Chiral anomalies Mass of n_0 $P \rightarrow \gamma \gamma$ (P: π^0 , n, n')
- Quark flavor SU(3) breaking
 The mixing of π⁰, η and η^c


The π^0 , n and n' system provides a rich laboratory to study the symmetry structure of QCD at low energy.

Primakoff Program at Jlab 6 & 12 GeV

- Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect.
- a) Two-Photon Decay Widths:
 - 1) $\Gamma(\pi^0 \rightarrow \gamma \gamma) @ 6 \text{ GeV}$ 2) $\Gamma(\eta \rightarrow \gamma \gamma)$ 3) $\Gamma(\eta' \rightarrow \gamma \gamma)$

Input to Physics:

- precision tests of Chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle

b) Transition Form Factors at low Q^2 (0.001-0.5 GeV²/c²): $F(\gamma\gamma^* \rightarrow \pi^0), F(\gamma\gamma^* \rightarrow \eta), F(\gamma\gamma^* \rightarrow \eta')$

Input to Physics:

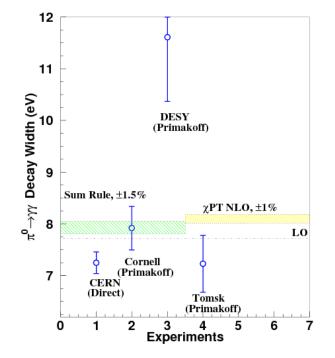
- > π^0 , η and η' electromagnetic interaction radii
- is the η' an approximate Goldstone boson?

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Experiments @ 6 GeV

 \square $\pi^0 \rightarrow \gamma\gamma$ decay proceeds primarily via the chiral anomaly in QCD. \square The chiral anomaly prediction is exact for massless quarks:

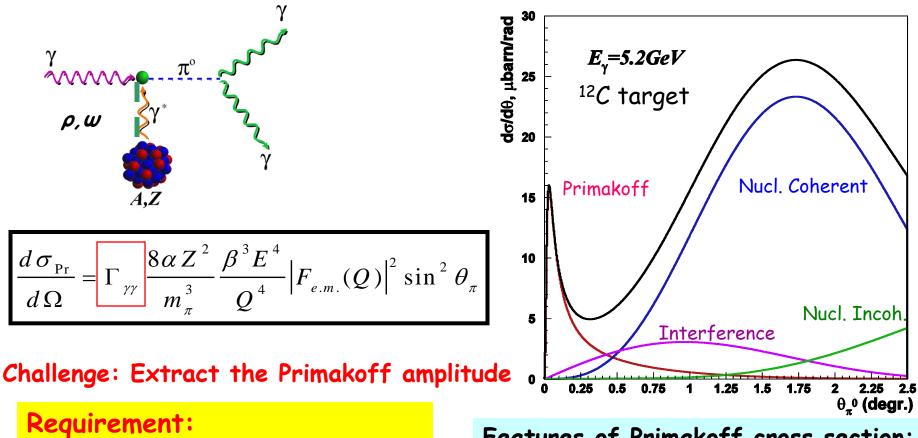
$$\Gamma(\pi^{0} \to \gamma \gamma) = \frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576 \pi^{3} F_{\pi}^{2}} = 7.725 \ eV$$

s quarks:


$$\pi - - k_1$$
 k_2

 \Box $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ is one of the few quantities in confinement region that QCD can

calculate precisely to higher orders!


Corrections to the chiral anomaly prediction: Calculations in NLO ChPT: $\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.10 \text{ eV} \pm 1.0\%$ (J. Goity, et al. Phys. Rev. D66:076014, 2002) $\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.06 \text{ eV} \pm 1.0\%$ (B. Ananthanarayan et al. JHEP 05:052, 2002) Calculations in NNLO SU(2) ChPT: $\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.09 \text{ eV} \pm 1.3\%$ (K. Kampf et al. Phys. Rev. D79:076005, 2009)

Calculations in QCD sum rule:
 Γ(π⁰→γγ) = 7.93eV ± 1.5%
 (B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007)

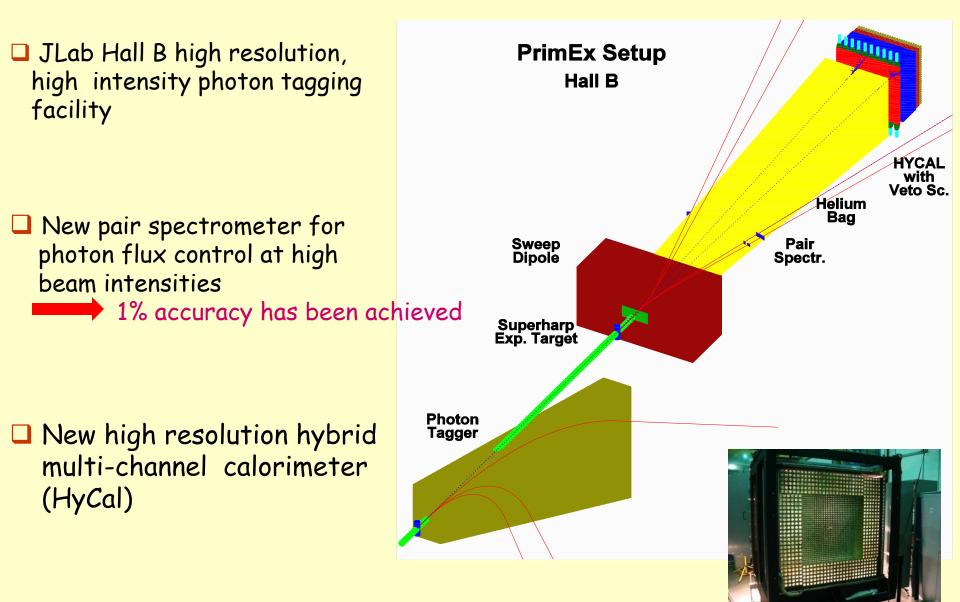
□ Precision measurements of $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ at the percent level will provide a stringent test of a fundamental prediction of QCD.

Primakoff Method

≻Photon flux

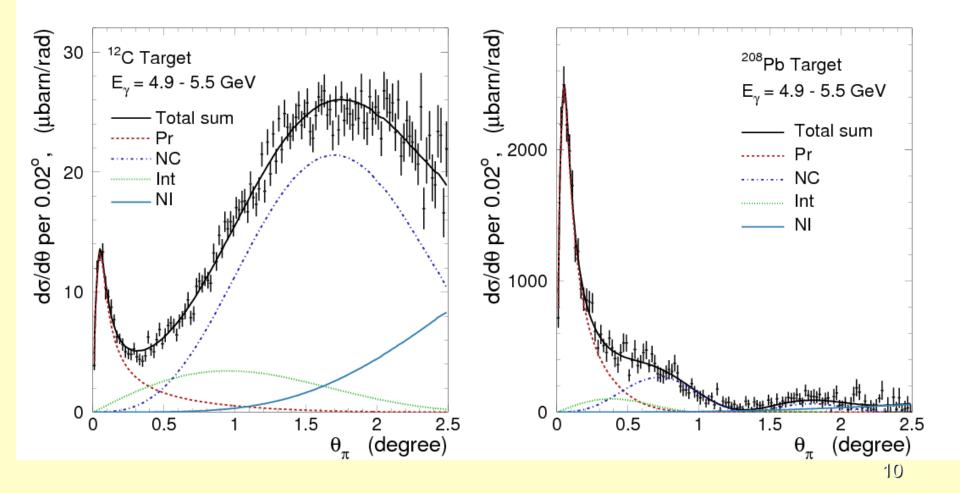
≻Beam energy

 $\gg \pi^0$ production Angular resolution

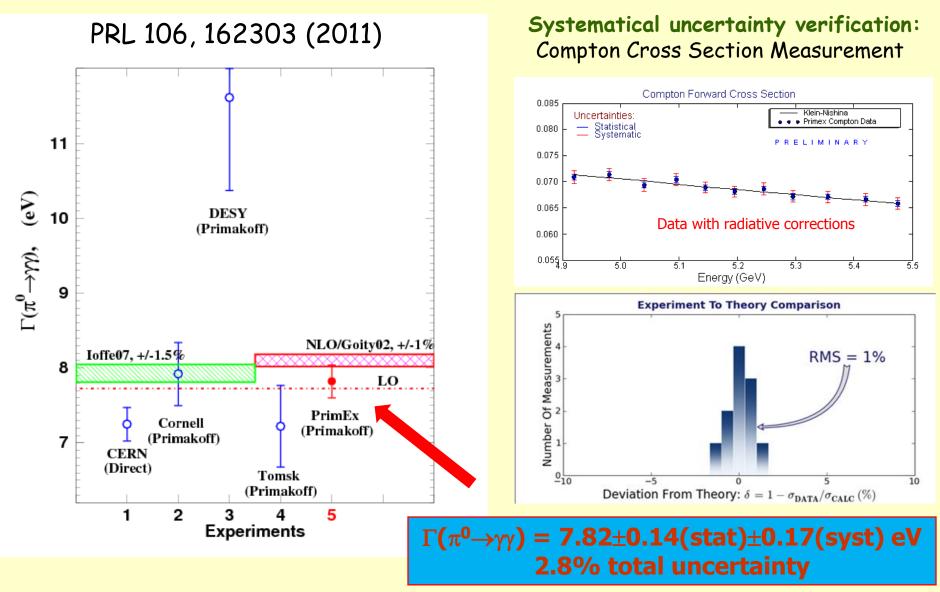

Features of Primakoff cross section:

•Peaked at very small forward angle:

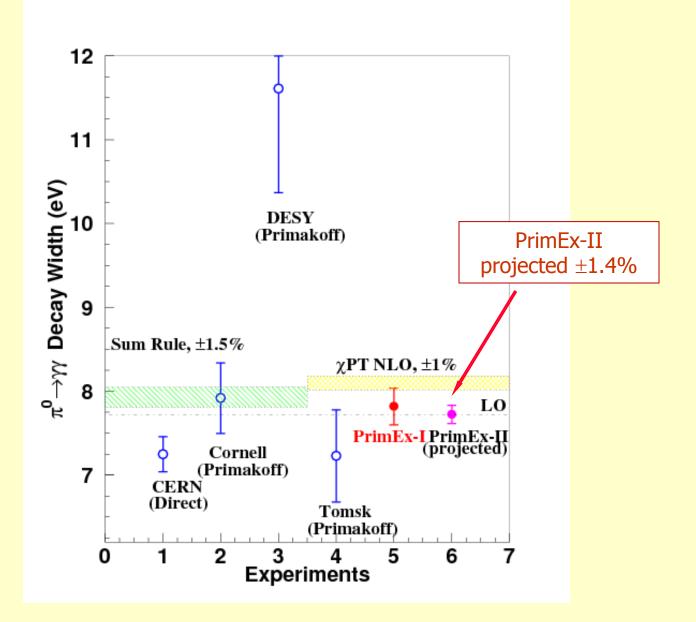
$$\left< \theta_{\rm Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$$


- •Beam energy sensitive: $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{\rm peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$
- •Coherent process

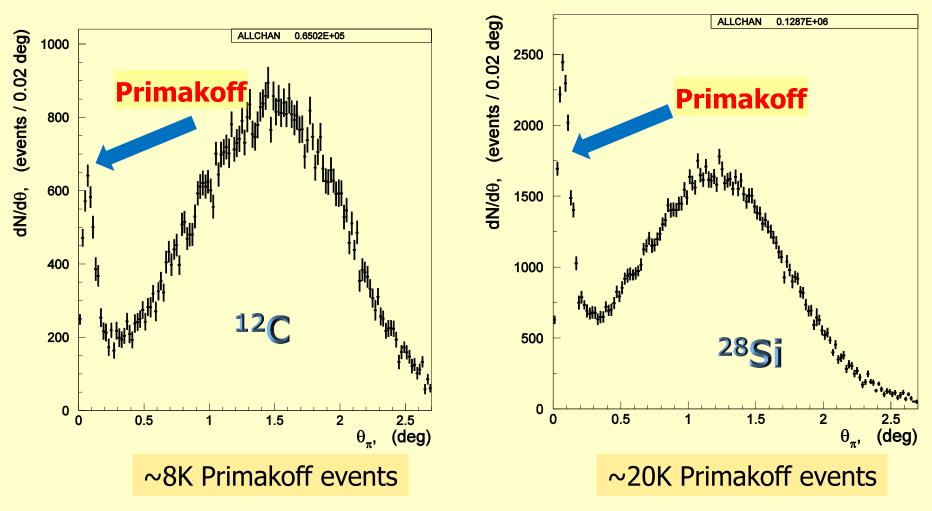
PrimEx-I (2004)



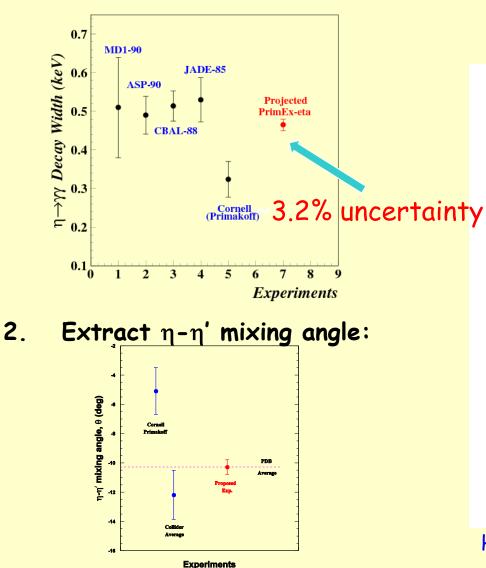
Fit Differential Cross Sections to Extract $\Gamma(\pi^0 \rightarrow \gamma\gamma)$


Theoretical angular distributions smeared with experimental resolutions are fit to the data on two nuclear targets:

PrimEx-I Result

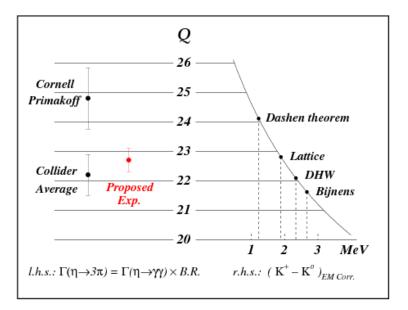


Goal for PrimEx-II (2010)

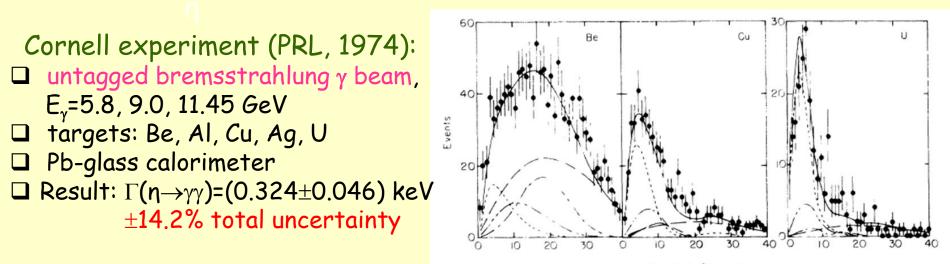

PrimEx-II Experimental Yield (preliminary)

(**E**γ = **4.4-5.3 GeV**)

Outcomes from $\Gamma(n \rightarrow \gamma\gamma)$ Experiment @ 12 GeV


1. Resolve long standing discrepancy between collider and Primakoff measurements:

3. Determine Light quark mass ratio:


$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}, \quad \text{where } \hat{m} = \frac{1}{2}(m_{u} + m_{d})$$

 $\Gamma(\eta \rightarrow 3\pi) \propto |A|^2 \propto Q^{-4}$

H. Leutwyler Phys. Lett., B378, 313 (1996)

Challenges in the $\eta \rightarrow \gamma \gamma$ experiment

Etc. Angle θ (mrad)

Compared to π^0 :

 $\succ \eta$ mass is a factor of 4 larger than π^0 and has a smaller cross section

$$\left(\frac{d\,\sigma_{\rm Pr}}{d\,\Omega}\right)_{\rm peak} \propto \frac{E^4}{m^3}$$

Iarger overlap between Primakoff and hadronic processes;

$$\langle \theta_{Pr} \rangle_{peak} \propto \frac{m^2}{2E^2} \qquad \theta_{NC} \propto \frac{2}{E \cdot A^{1/3}}$$

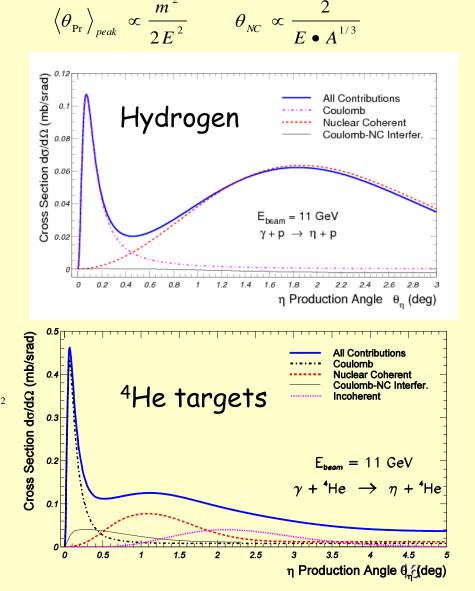
larger momentum transfer (coherency, form factors, FSI,...)

Advantages of the Proposed Light Targets

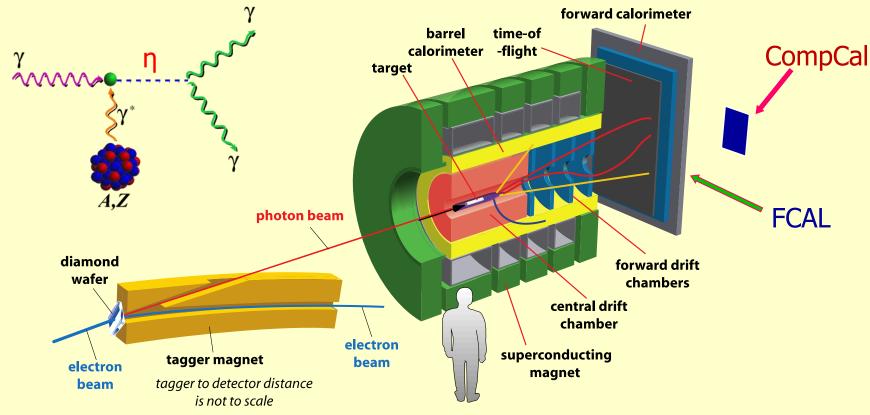
Precision measurements require low A targets to control:

contributions from nuclear processescoherency

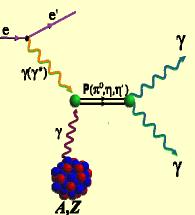
Hydrogen:

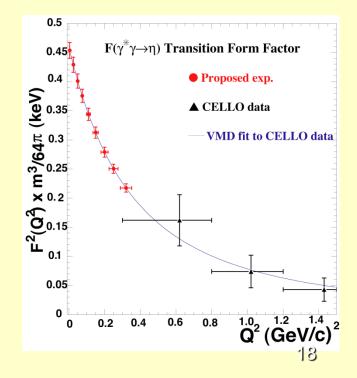

- ✓ no inelastic hadronic contribution
- no nuclear final state interactions
- proton form factor is well known
- better separation between Primakoff and nuclear processes
- new theoretical developments of Regge description of hadronic processes

J.M. Laget, Phys. Rev. C72, (2005) A. Sibirtsev, et al. arXiv:1001.0646, (2010)


⁴He∶

- \checkmark higher Primakoff cross section: $\sigma_{\rm Pr} \propto Z^2$
- the most compact nucleus
- form factor well known
- new theoretical developments for FSI

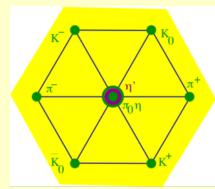

Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ in Hall D at 12 GeV



- >Incoherent tagged photon beam (~10.5-11.5 GeV)
- > Pair spectrometer and a TAC detector for the photon flux control
- > 30 cm liquid Hydrogen and ⁴He targets (~3.6% r.l.)
- > Forward Calorimeter (FCAL) for $\eta \rightarrow \gamma \gamma$ decay photons
- CompCal and FCAL to measure well-known Compton scattering for control of overall systematic uncertainties.
- > Solenoid detectors and forward tracking detectors (for background rejection)

Transition Form Factors $F(\gamma\gamma^* \rightarrow p)$ (at Low Q²)

- Direct measurement of slopes
 - Interaction radii: F_{yy*P}(Q²)≈1-1/6-<r²>_PQ²
 - ChPT for large N_c predicts relation between the three slopes. Extraction of O(p⁶) low-energy constant in the chiral Lagrangian
- Input for light-by-light scattering for muon (g-2) calculation
- Test of future lattice calculations



Why n is an unique probe for New physics?

 The most massive member in the octet of pseudoscalar Goldstone mesons (547.9 MeV/c²)
 Many open decay channels

Sensitive to QCD symmetry breakings

Due to the symmetries in the strong and EM interactions, the η decay width Γ_η =1.3KeV is extremely narrow (relative to Γ_ρ=149MeV)
 The lowest orders of η decays are filtered out in the strong and EM interactions, enhancing the contributions from higher orders by a factor of ~100,000.

$$\Box$$
 Eigenstate of P, C, CP, and G: $I^G J^{PC} = 0^+ 0^{-+}$

Study violations of discrete symmetries

The n decays are flavor-conserving reactions which are effectively free of SM backgrounds for new physics search.

n decays is a unique probe to test SM and to search for new physics beyond SM: (1) test higher order xPTh and future lattice QCD predictions; (2) new sources of fundamental symmetry violations; (3) light dark matter.

n Neutral Rare Decay Channels

Mode	Branching Ratio (PDG)	Physics Highlight
π ⁰ 2γ	(2.7±0.5)×10 ⁻⁴	χPTh @ O(p ⁶), Lattice QCD
2π ⁰	<3.5 × 10 ⁻⁴	CP, P
Зү	<1.6 × 10 ⁻⁵	С
π ⁰ γ	<9×10 ⁻⁵	C, L, gauge inv.
4γ	<2.8 × 10 ⁻⁴	Suppressed (<10 ⁻¹¹)
π ⁰ π ⁰ γ	<5 × 10 ⁻⁴	С
π ⁰ π ⁰ π ⁰ γ	<6×10 ⁻⁵	С
4π ⁰	<6.9 × 10 ⁻⁷	CP, P

Status of $\eta \rightarrow \pi^0 \pi^0$

theoretical predictions:

	$BR \ (\eta \to \pi \pi)$	
CKM (SM)	$\leq 2 \times 10^{-27}$ (G ² _F , cancellation) C.Jarlskog, E.Shabalin, PS T 99 (02) 23	
θ (QCD)	$\leq 3 \times 10^{-17} (d_n)$ C.Jarlskog, E.Shabalin, PR D 52 (95) 6327	
extended Higgs	$\leq 1.2 \times 10^{-15}$ C. Jarlskog, E. Shabalin, PR D 52 (95) 6327	
general	$\leq 3.5 \times 10^{-14} (d_n)$ M.Gorchtein, hep-ph 0803.2906	

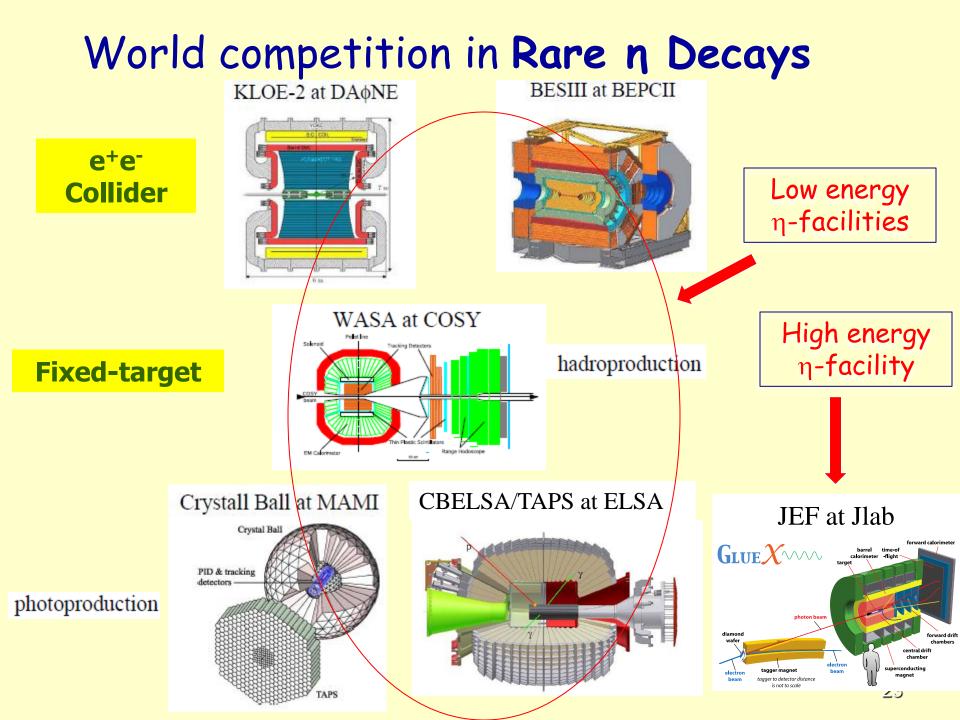
experimental limits:

BR $(\eta \to \pi^0 \pi^0) \le 3.5 \times 10^{-4}$ GAMS-4 π , PAN 70 (07) 693

Detection at any level would be signature of P and PC violations from new sources!

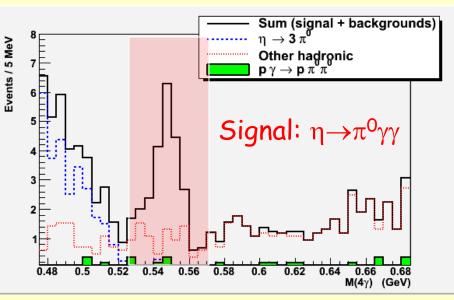
Strong CP Problem

> A term in QCD Lagrangian violates P, T, CP. It only manifests in flavor-conserving phenomena. $g_s^2 = \frac{1}{2}$


$$L_{\theta} = \theta_{QCD} \ \frac{g_{s}}{32 \pi^{2}} G \cdot \tilde{G}$$

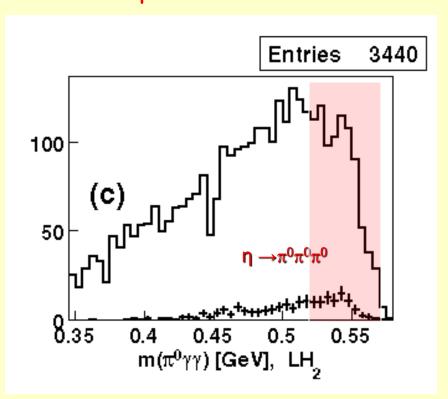
- ➢ When including electro-weak interaction in SM, the QCD vacuum angle becomes: $\overline{\theta} = \theta_{\text{OCD}} + \arg \det(M^{U}M^{D})$
- ➤ Current experimental constraint on θ came from neutron EDM theoretical estimations: $d_n \sim (4 \cdot 10^{-17} \div 2 \cdot 10^{-15}) \overline{\theta} \ e \cdot cm$ experimental limit: $d_n \leq 2.9 \times 10^{-26} \overline{\theta} \ e \cdot cm$
- Such constraint is sensitive to the tree level and loop term cancellation (K. Ottnad, et al., Phys.Lett., B687, 42 (2010)):

$$d_{n}^{tree} = (2.9 \pm 1.1) \times 10^{-16} \overline{\theta} \ e \cdot cm \qquad d_{n}^{loop} = -3.0_{-0.8}^{+1.1} \times 10^{-16} \overline{\theta} \ e \cdot cm$$


$$\eta \rightarrow 2\pi^{0} \text{ may shed light on the Strong CP problem:}$$

$$2Br (\eta \rightarrow 2\pi^{0}) \sim 180 \overline{\theta}^{2} \qquad \text{If } \overline{\theta} \sim 10^{-4} \text{, then } Br (\eta \rightarrow 2\pi^{0}) \sim 10^{-6}$$

Filter Background with n Energy Boost

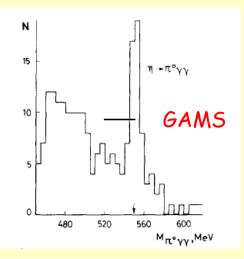

Jlab: high energy η production (E_y = 9-11.7 GeV)

Note:

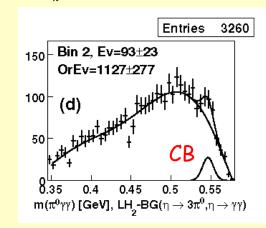
- Statistics is normalized to 1 beam day.
- >BG will be further reduced by requiring only one pair of γ 's to have the π^0 invariant mass.

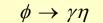
Other competitors (CB, KLOE, BES-III, WASA, CBELSA/TAPS): low energy n production

S. Prakhov et al. Phy.Rev., C78,015206 (2008)

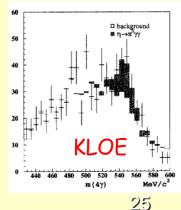

Advantages of JLab

- **I** High energy tagged photon beam to reduce the background from $\eta \rightarrow 3\pi^0$
 - > Lower relative threshold for γ -ray detection
 - Improved missing energy resolution
- **Recoil proton detection** to reduce non-coplanar backgrounds like non-resonant $\gamma p \rightarrow \pi^0 \pi^0 p$
- High resolution, high granularity PbWO₄ Calorimeter
 - improved invariant mass, energy and position resolutions
 - \succ fewer overlapping showers, thus reducing background from $\eta \rightarrow 3\pi^0$
 - \blacktriangleright Fast decay time (~20ns) and Flash ADCs \rightarrow reduced pile-up
- High statistics to provide a precision measurement of Dalitz plot

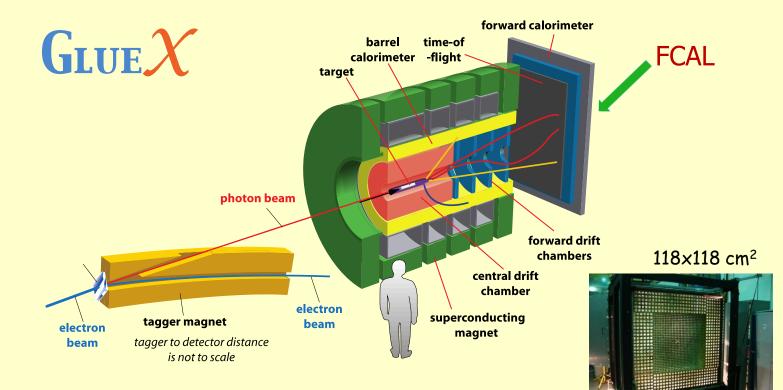

High energy n-production


Low energy n-production

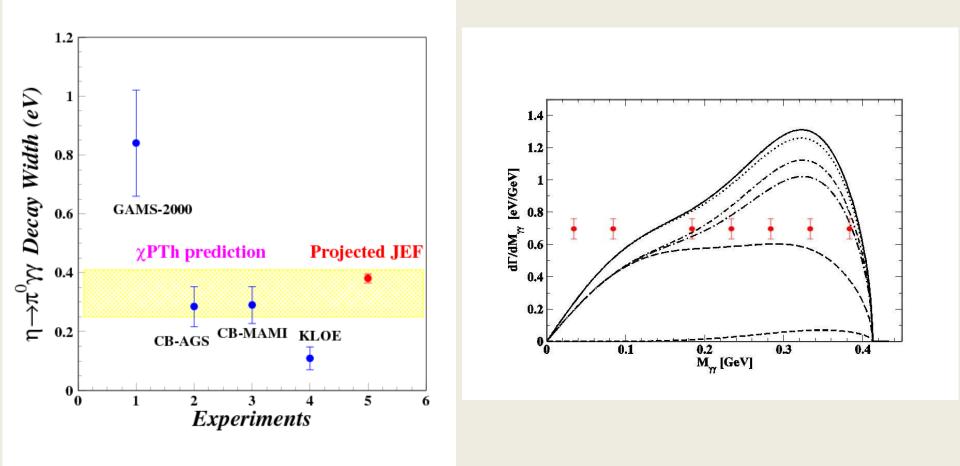
$$E_{\pi} = 30 \text{ GeV/c}$$



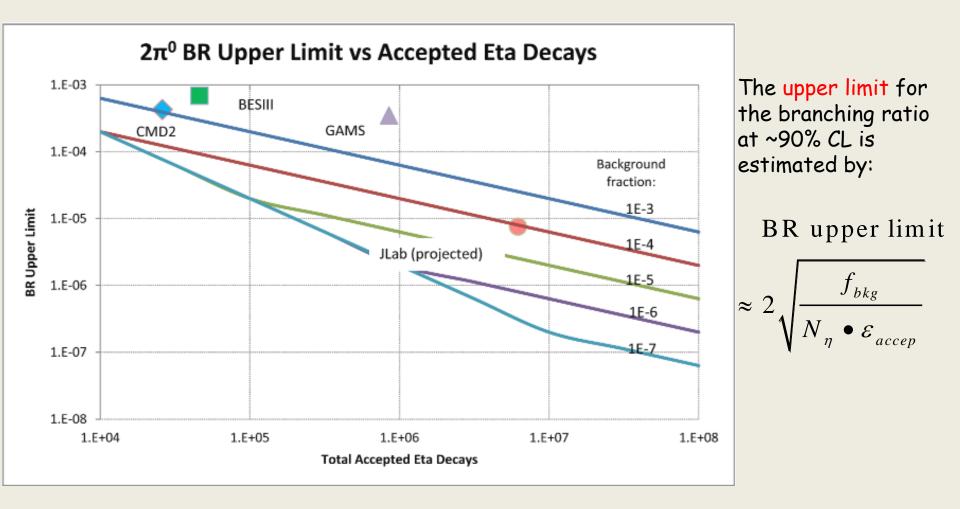
$$E_{\pi} = 720 \text{ MeV/c}$$



 ϕ production $\sqrt{s} = 1020 \text{ MeV}$


Proposed JEF Experiment in Hall D

Simultaneously measure the $\eta \rightarrow \pi^0 \gamma \gamma$, $\eta \rightarrow \pi^0 \pi^0$, $\eta \rightarrow 3 \gamma$


- □ n produced on LH₂ target with 9-11.7 GeV tagged photon beam: $\gamma + p \rightarrow \eta + p$
- □ Further reduce $\gamma p \rightarrow \pi^0 \pi^0 p$ and other background by detecting recoil p's with GlueX detector
- Upgraded Forward Calorimeter with PbWO₄ (FCAL-II) to detect multi-photons₂₆ from the n decays

Projected JEF Measurement on $\eta \rightarrow \pi^0 2\gamma$

100 days of beam time

Improvement on SM Forbidden Channels

Improve the upper limits on the SM forbidden neutral decay channels by a factor of 1-1.5 orders of magnitude !

Neutral Vector U Boson (Dark Photon)

M.Reece, L.T.Wang, JHEP 07 (2009) 051

• Dark photon, a_u of U(1)_d couples to the SM photon by gauge kinetic mixing with U(1)_y of the SM:

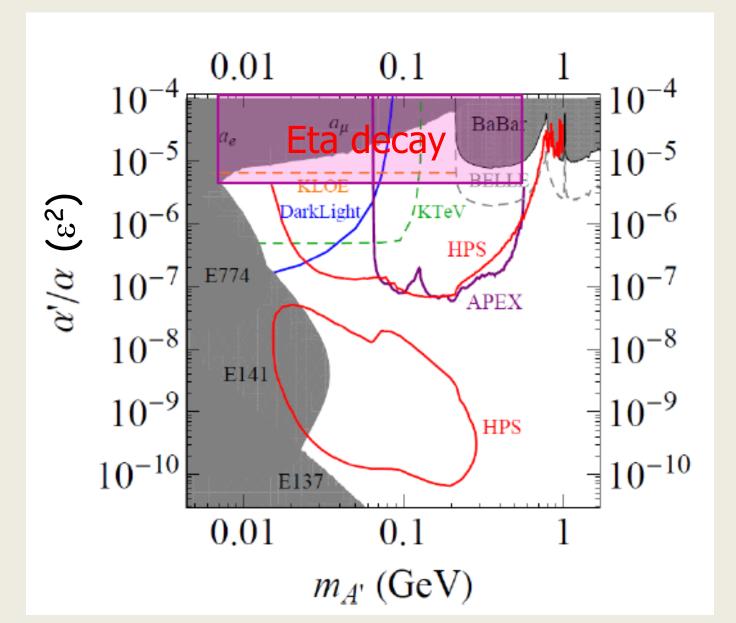
$$\mathcal{L}_{\rm kin-mix} = -2\epsilon F_d^{\mu\nu} F_{\mu\nu}.$$

$$e^{\gamma^* U}_{\varepsilon} \varepsilon \approx 10^{-3} \text{ or less}$$

- Dark photon, a_u of U(1)_d, coupling to SM weak currents is suppressed by m_U^2 / m_Z^2 , $m_U \sim 1 \text{ MeV}$ - few GeV
- U(1)_d, is spontaneously broken, therefore U-boson has mass of $m_U \sim 1 \text{ MeV}$ few GeV

U in Meson Decays

M.Reece, L.T.Wang, JHEP 07 (2009) 051


$$X \rightarrow YU$$
, Followed by $U \rightarrow e^+e^-$

For S/ $\sqrt{B} = 5$

$X \rightarrow YU$	n_X	$m_X - m_Y$ (MeV)	$\mathrm{BR}(X\!\rightarrow\!Y\!+\!\gamma)$	$\mathrm{BR}(X\!\to\!Y\!+\!\ell^+\ell^-)$	$\epsilon \leq$
$\eta \rightarrow \gamma U$	$n_\eta\!\sim\!10^7$	547	$2\! imes\!39.8\%$	6×10^{-4}	2×10^{-3}
$\omega \rightarrow \pi^0 U$	$n_{\omega} \sim 10^7$	648	8.9%		5×10^{-3}
$\phi \rightarrow \eta U$	$n_{\phi} \sim 10^{10}$	472	1.3%	1.15×10^{-4}	$1\! imes\!10^{-3}$
$K_L^0 \rightarrow \gamma U$	$n_{K_L^0}\!\sim\!10^{11}$	497	$2\!\times\!(5.5\!\times\!10^{-4})$	9.5×10^{-6}	$2\! imes\!10^{-3}$
$K^+ \rightarrow \pi^+ U$	$n_{K^+} \sim 10^{10}$	354	-	2.88×10^{-7}	$7\! imes\!10^{-3}$
$K^+ \rightarrow \mu^+ \nu U$	$n_{K^+}\!\sim\!10^{10}$	392	6.2×10^{-3}	7×10^{-8} ²	$2\! imes\!10^{-3}$
$K^+ \rightarrow e^+ \nu U$	$n_{K^+}\!\sim\!10^{10}$	496	1.5×10^{-5}	2.5×10^{-8}	7×10^{-3}

Table 1. Reach in U-boson coupling in several competitive meson decay channels, assuming branching ratios to e^+e^- , $\mu^+\mu^-$ are similar if allowed by phase space. We take $m_U = 250$ MeV for this table. $m_X - m_Y$ is the largest m_U which can be probed in a particular channel, although reach will certainly reduce near kinematical boundary. Only $m_X - m_Y > 200$ MeV included. We elaborate on the treatment of the Kaon decay channels and discuss the decays of J/ψ and Υ in the text. Unless stated otherwise, the branching ratios are taken from the meson summary tables in ref. [40].

Experimental Sensitivity

Summary

- Testing the symmetries of SM will help us understanding fundamental issues in physics: confinement QCD and new physics beyond Standard Model.
- □ The PrimEx experiments will provide precision tests of continuous symmetries in confinement QCD by a study of electromagnetic properties of π^0 , η and η' via the Primakoff effect.
- Measurements of various n rare decays with GlueX will be sensitive probes for testing the discrete symmetries of SM and searching for the evidences of new physics beyond: (1) test higher order xPTh and future lattice QCD predictions; (2) tighten the constrains on new sources of C, P and CP symmetry violations; (3) investigate the dark photon.
- □ Jlab offers great opportunities for precision experiments.

The End

Thanks you!